MySQL Configuration

To get an idea what a typical SLES 10 user will experience, we simply used the MySQL version which is supported by the latest SLES 10 SP1, i.e. MySQL 5.0.26. Unfortunately, this means that we see the typically bad scaling. Therefore we focus on the single CPU, dual core results. It doesn't make sense to use a quad Xeon 5345 here: more than two CPUs give negative scaling as we have reported before. The 2.33GHz Xeon 5345 scored between 700 and 750 queries per second as a result of this. For those who are surprised by this: notice that Intel's own benchmarks use four parallel runs of the Sysbench MySQL benchmark to get higher scores out of MySQL. All testing was done with InnoDB as our storage engine in MySQL 5.0.26. Here is our MySQL configuration:

MySQL Configuration
default-storage-engine InnoDB
skip-external-locking  
skip-locking  
key_buffer 256M
.
table_cache 64
max_allowed_packet 1M
thread_stack 128K
.
sort_buffer_size 2M
read_buffer_size 2M
innodb_buffer_pool_size 1G
.
thread_concurrency 16
innodb_thread_concurrency 16
innodb_additional_mem_pool_size 8MB
read_rnd_buffer_size 8MB
thread_cache 64
max_heap_table 256MB
tmp_table 128MB
.
innodb_log_file_size 250MB
innodb_table_locks 0
innodb_flush_log_at_trx_commit 0
max_user_connections 2000
max_connections 2000

The "query cache" was off, as we wanted to test worst case performance. Our test database is still the same 1GB database. The workload consists of more than 90% selects, mostly a "read intensive" workload. All numbers are expressed in queries per second (Y-axis), and the X-axis shows the number of concurrent accesses.

MySQL results



The Xeon 5160 keeps a 10-14% lead on the Opteron 2224. Our time was limited, and you'll see other versions of MySQL pop up in later reviews. The first results seem to indicate that the difference between the Opteron and Xeon gets smaller.

SPECjbb2005 Render Servers
Comments Locked

30 Comments

View All Comments

  • piroroadkill - Tuesday, August 7, 2007 - link

    it is a car analogy
  • Gul Westfale - Monday, August 6, 2007 - link

    good analogy there, except that mustangs (and various other cars) use pickup truck engines for cost reasons. large trucks use larger engines (often diesels) because they offer considerably more torque at much lower RPM than a smaller gasoline engine; and thus provide more pulling power.
  • Gul Westfale - Monday, August 6, 2007 - link

    these are not regular consumer cpus, but intended for use in commercial servers and workstations. they and their motherboards cost more because they support features such as multiple sockets (so in addition to having multiple cores on one chip you can also have multiple chips on one motherboard).

  • yyrkoon - Monday, August 6, 2007 - link

    quote:

    Intel has a clear lead in the rendering market. If you are rendering complex high resolutions images, the quad core Xeon is clearly the best choice.


    they win 1 of 2 tests, and it is clear they are the winner ? Why ? Because they won the software rendering also ? Anyone interrested enough in rendering, and HAVING to have this sort of hardware for it is NOT going to bother with software . . .

    This means your conclusion on this point is incorrect, and in which case, it boils down to which application the rendering machine is going to do.

    Man you guys come to the wierdest conclusions based on your own data, and I am not even the first to notice/mention this sort of thing . . .
  • JohanAnandtech - Monday, August 6, 2007 - link

    The Quadcore wins all high resolution rendering tests. Where do you see the DC opterons win against the Quadcore Intel in high resolution rendering? Show me a rendering engine where a 3 GHz K8 DC core is faster in high resolution renderering than a 2.33 GHz Quadcore. All decent and used in the realworld rendering engines will more or less show the same picture.

    In fact, the "rendering performance" situation will get worse for the K8 as SSE-2 tuning will get more common. All Intel CPUs since core and all AMD CPUs since Barcelona will show (or are already showing) high performance boost from using better SSE-2 code.
  • yyrkoon - Monday, August 6, 2007 - link

    Ok, I see now with the graphs 'lower is better' on 3ds max, I missed that with the tables, which is actually what I meant this morning 'table obfustication'. I personally do not mind tables, but when the data is not in a uniform spot, it confuses/makes it harder to read at a glance.

    Anyhow, I was tired when I posted this morning, cranky, and was overly harsh I think. However it *is* much easier for me personaly to read the graphs at a glance (I cannot speak for everyone though).
  • yyrkoon - Monday, August 6, 2007 - link

    Oh, and while on the subject, you guys here at anandtech have lately mastered the art of graph obfustication. Is it really THAT hard leaving items in the same rows / columns for different tests ? Are we trying to confuse the results, or is there some other reason this happens, and has gone completely over my head ?
  • JohanAnandtech - Monday, August 6, 2007 - link

    The only reason is that until very recently I didn't master the graphing engine. I got some weird error messages and gave up. But I have found the error, and you should see some nice graphs which don't obfusticate...
  • Spoelie - Monday, August 6, 2007 - link

    the gif on page 2 is non-looping, so after a very quick jump from 1ghz -> 2.8ghz (why??) -> 3.2ghz , it stays put on the 3.2ghz image. If reading the article, by the time the reader sees the image, it's already 5 minutes on the last image and staying there, making it for all intents and purposes a static image instead of an animated one

    :)
  • JohanAnandtech - Monday, August 6, 2007 - link

    Thanks, fixed that. The reason to show 2.8 GHz is that for example Specjbb and other applications sometimes don't completely stress the CPU and then the cpu dynamically goes back to 2.8 GHz. It are simply the 3 stages I saw the most, and found the most interesting to show.

Log in

Don't have an account? Sign up now