Problem 2: Why did things get slower?

In our initial look at Santa Rosa and Intel's Turbo Memory we generally found that performance wasn't improved and in some cases it got significantly worse. Take for example the amount of time the notebook took to go into hibernate mode:

With Turbo Memory enabled, the system took another 11 seconds to hibernate. Going back to our explanation of what Turbo Memory is supposed to do, it isn't supposed to reduce hibernate time at all. At best, the ReadyBoost portion of Turbo Memory can make data available a little quicker after waking up from hibernation but that's it. Needless to say, the technology isn't designed to make hibernation times any slower. Clearly we needed to do some digging.

In our first article we showed no performance difference between Turbo Memory enabled vs. disabled in the PCMark '05 HDD test. Given that we disabled Turbo Memory using the console it appears that it remained enabled in both tests, making the scores useless. Armed with our new found information on how to properly test with Turbo Memory, we took another look at PCMark '05.

The PCMark '05 HDD test is composed of real world disk usage, played back in a manner similar to what we do in our hard drive reviews. The individual tests are as follows:

Windows XP Startup: This is the Windows® XP start trace, which contains disk activities occurring at operating system start-up. The test is 90% reading and 10% writes. This trace contains no user activity.

Application Loading: This is a trace containing disk activities from loading various applications. It includes opening and closing of the following applications:

- Microsoft® Word

- Adobe® Acrobat® Reader 5

- Windows® Media Player

- 3DMark®2001SE

- Leadtek® Winfast® DVD

- Mozilla Internet Browser

The application loading trace is 83% reads and 17% writes.

General Hard Disk Drive Usage: This trace contains disk activities from using several common applications. These are:

- Opening a Microsoft® Word document, performing grammar check, saving and closing

- Compression and decompression using Winzip

- Encrypting and decrypting a file using PowerCrypt

- Scanning files for viruses using F-Secure® AntivirusTM.

- Playing an MP3 file with Winamp

- Playing a WAV file with Winamp

- Playing a DivX video using DivX codec and Windows® Media Player

- Playing a WMV video file using Windows® Media Player

- Viewing pictures using Windows® Picture Viewer

- Browsing the internet using Microsoft® Internet Explorer

- Loading, playing and exiting a game using UbisoftTM Tom Clancy's Ghost Recon

The General Usage trace is 60% reads and 40% writes.

Virus Scanning: Virus scanning is a critical task in today's PC usage. As the major bottleneck of scanning viruses is in hard disk activity, it is reasonable to include virus scanning as a HDD test. The test consists of HDD activity of scanning 600MB of files for viruses. The Virus Scanning test is mostly disk reading (99.5%).

File Write: This trace contains disk activities from writing 680MB files on the hard disk and no read operations are involved in this test.

Disk idle times have been compressed to 50 milliseconds to speed up the playback time. Our studies showed that 50 milliseconds was the smallest idle time interval that didn't affect the test results. The results of the HDD tests are reported in Megabytes processed per second.

Basically PCMark takes the disk accesses from these various usage patterns and plays them back as fast as possible. The tests are grounded in the real world but the actual performance metrics that result are skewed to favor very fast disk subsystems. In the case of Turbo Memory, we're testing its prefetching algorithms for getting data into the cache.

Turbo Memory State XP Startup Application Loading General Usage Virus Scan File Write
Disabled 6.286 MB/s 5.109 MB/s 4.314 MB/s 47.496 MB/s 28.739 MB/s
Enabled 12.209 MB/s 10.437 MB/s 10.1043 MB/s 47.806 MB/s 18.657 MB/s

The results are particularly impressive, performance in the XP Startup, Application Launch and General Usage tests is at worst double with Turbo Memory enabled. Clearly the same isn't true in the real world as we weren't able to measure any improvements in system boot or application start times, but the technology is working at least in this controlled environment.

The numbers that are most intriguing are the file write numbers, because this is the only test were performance goes down when Turbo Memory is enabled. The write speed to the flash memory isn't nearly as good as to our 7K100 test drive, which echoes what we saw with the hibernate entry test, which is fairly write intensive.

According to Intel, the system hibernating shouldn't be slowed down by Turbo Memory but Intel engineers have duplicated the test results we're seeing. It seems like the write speed of the flash memory is to blame here, causing performance degradation when there's a lot of writing (e.g. hibernating). Whether or not this behavior can be seen on all Santa Rosa laptops has yet to be determined, but it is a definite issue we've encountered with Turbo Memory.

Problem 1: A Poorly Written Control Panel Problem 3: Keeping that drive spun down
Comments Locked

31 Comments

View All Comments

  • SilthDraeth - Wednesday, June 20, 2007 - link

    NVM. I think I understand. The "Windows XP startup" is a test that "PCMark '05" runs.

    Thanks.
  • DigitalFreak - Wednesday, June 20, 2007 - link

    They really should have dedicated the entire 1GB to ReadyDrive instead of splitting it.
  • Nighteye2 - Tuesday, June 19, 2007 - link

    I miss the test of readyboost at 2GB of memory. Does the technology still improve performance even when you have a lot of memory?
  • Azsen - Tuesday, June 19, 2007 - link

    It does sound like Microsoft need to rework the code for Readyboost and Turbo memory to make use of the extra flash memory more. From the benchmarks it doesn't look like it's being used to its full potential at all. They also need to rework the code so it's enabled after one reboot, not a whole lot of reboots. That's shocking.
  • androticus - Tuesday, June 19, 2007 - link

    A technology so persnickety, complicated, and without any significant real world benefits and often just more slowdowns is a total loser!

    And 512M of cache supposed to in any way adequately cover the huge hard disks of today? Including swap file?
  • yzkbug - Tuesday, June 19, 2007 - link

    My take is to go with a flash-based hard-drive (when prices come down). It should give all benefits that the Turbo Memory was supposed to bring: drain less power and have quick random seeks.
  • Roy2001 - Tuesday, June 19, 2007 - link

    Agree.
  • Pirks - Tuesday, June 19, 2007 - link

    this poor soul together with his lover beenthere would just jump from joy reading this article. expect usual assortment of MICROSUCKS and INTEL SCAM and shit like that.

    what's the most funny here is that this is the only case where he would be pretty close to truth, ain't that amusing huh
  • pnyffeler - Tuesday, June 19, 2007 - link

    While I may agree that the impact is minimal, you still have to tip your hat to Intel. Power saving in laptops is probably not going to see revolutionary changes. While 5-10% may not seem like much, it's better than not having it.

    Besides, what's to say that the impact might be much larger with a larger cache. You could argue that at the extreme end, the longest the battery life could be extended to would be if there was no hard drive at all, just the flash drive. If that were true, then the max the battery life could be under this scheme is the battery life with only a flash drive. How does that compare to these numbers?

    And finally, what gives with only 1 GB of flash? If an iPod with 8GB of flash costs $250, I'd pay that much for 8 GB in my laptop if it would make a big enough difference.
  • TA152H - Tuesday, June 19, 2007 - link

    Anand,

    You're missing something quite significant on ReadyBoost. You talk about adding another gigabyte of memory like there is only a financial cost involved, but this isn't so. If you add more memory to laptop, you use more power, emit more heat, etc... If you can get similar performance for a part that uses less power (it would be interested to know how much power it does use), you extend battery life as well as save money, and don't suffer a huge performance penalty. So, it's actually quite useful.

Log in

Don't have an account? Sign up now