Gaming Performance & Power Usage

Quake 4 was the first application that really showed us the performance penalty you incur when moving to Brisbane, in this case the older core is about 4% faster. If you take into account that we're looking at performance at 1600 x 1200 with a GeForce 8800 GTX, in more GPU limited situations you're unlikely to notice the performance difference, but at more CPU limited situations the delta could likely grow even larger than 4%.

As the Core 2 processors are pushing much more data to the GPU than their competitors, average power consumption is generally much higher - it's the expense of greater performance in this case. The performance per watt charts take into account both factors and give you more of a breakdown of efficiency. Despite the decrease in performance, the reduction in power consumption gives the new Brisbane cores the efficiency advantage over most of their predecessors.

Gaming Performance - Quake 4

Gaming Power Usage - Quake 4

Gaming Performance per Watt - Quake 4

Oblivion didn't show a real impact in performance due to the slower Brisbane cores, but it clearly favors Intel's Core 2 architecture over AMD's.

Gaming Performance - Oblivion

Gaming Power Usage - Oblivion

Gaming Performance per Watt - Oblivion

3D Rendering Performance & Power Usage Gaming Performance & Power Usage - Continued
Comments Locked

52 Comments

View All Comments

  • Spoelie - Thursday, December 21, 2006 - link

    This is not the first time this has happened, it may be easy to forget, but do you guys remember the thoroughbred?

    Thoroughbred A was the first 180nm to 130nm shrink and had a hard time reaching the speeds the mature 180nm cores were getting. It wasn't till AMD added another layer to the core (Thoroughbred B) that we saw the expected speedups from a die shrink.
  • PetNorth - Thursday, December 21, 2006 - link

    Anand:

    Why don't you set manually the voltage, to know really what's the improvement with 0.65 transition?
    1.30v to compare it with 5000+ 90nm, and 1.25v to compare it with 4600+ EE 0.90nm.
    It would be a good thing IMO.
  • yyrkoon - Thursday, December 21, 2006 - link

    There are already people who believe that odd numbered multipliers offer worse performance compared to even numbered multipliers. I cant help but wonder why AMD chose to start implementing floating point multipliers now. The first thing that comes to mind, is maybe to refine their pricing ? Although, I've never really noticed much performance (if any) difference using odd vs even numbered multipliers, I can not help but wonder if floating point multipliers will play a factor in performance.
  • Regs - Thursday, December 21, 2006 - link

    AMD has been stepping in baby steps in their innovation merits. Ever since the IMC and the enhancements from K7 to K8 it seems like they improve little by little. I hope this gives them a rude awakening to how competitive the market can or could be in future. If they did it before they can do it again.

    As for the transition to 65nm, it was no surprise that these parts could not over clock very well. The K8 is showing its age and I think there are no more ways you can breathe life back into it especially when Core Duo is out in the market.
  • mino - Thursday, December 21, 2006 - link

    Why awekening, and why rude? The fact is AMD kept PARITY with intel on power AND performance inthe lower end with 90nm!!! part with Intel beeing at 65nm for a year allredy!
    In other words, When AMD's 90nm process is FAR better that Intel's ever was. Same happened with 130nm. Two words: SOI,APM.
    No confusion, all thi means no one should avaluate AMD vs. Intel on process_used base. Simply put, as of now(at stock) Intel rules on perf&power while AMD rules on idle_power and price(up to 4200+/E6300 combo).
  • IntelUser2000 - Thursday, December 21, 2006 - link

    quote:

    The impact of higher voltages on power consumption also applies to Intel as well. As you will see in our power comparison, in a number of cases our Core 2 Duo E6300 required even more power than the E6600 we tested last time. The reason being that our E6300 sample runs at a core voltage of 1.325V vs. 1.2625V for our E6600 sample. Just things to keep in mind as you look at the power results over the next few pages.


    Intel bins Core 2 Duo by power consumption.
  • xsilver - Thursday, December 21, 2006 - link

    just to clarify further; all e6600's will have lower stock voltages than e6400's and all e6400's will have lower stock voltages than e6300's?

    at both idle and load?

    how successful are the conroes at undervolting?
  • Accord99 - Thursday, December 21, 2006 - link

    Pretty good, my week 25 E6600 is stable at 2.6GHz/1.1v (My P5B-dlx doesn't go any lower) with dual-P95. The heat output is easily cooled passively by a Scythe Ninja.

    Here's a thread, one person has a E6600 that does 2.4@/~1v

    http://www.xtremesystems.org/forums/showthread.php...">http://www.xtremesystems.org/forums/showthread.php...
  • blackbrrd - Thursday, December 21, 2006 - link

    I have seen a E6600 running at 1,0v at load... It was obviously very cool running :)

    My E6400 is running at 1,15v at idle (2133MHz) and 1,25v at load (2133MHz)

    Power saving features were off in both instances...
  • haugland - Thursday, December 21, 2006 - link

    AMD win in one aspect...

    I you really consider power consumption to be important, it is much more important to look at idle power consumption than power consumption at full load. Most business PCs idle a lot of the time, and AMDs CPUs are much better at saving power at idle.

    EIST was designed for P4, and for a 3+ GHz P4 it makes sense to drop the multiplier to 6. However when the E6300 normally run at a multiplier of 7, you don't get much of a power saving by dropping the multiplier to 6. AMD C'n'Q allows for much lower settings.

Log in

Don't have an account? Sign up now