Power

A card's GPU, clock speeds, and overall design determine the kind of power draw it creates on your system. Moving parts on the heat sink sometimes require more power to run, which is what might give silent cards a slight advantage in this area. However, just because there are no moving parts on a card doesn't mean that it won't still draw large amounts of power. Only one of our cards required an external power connection from the power supply; the rest simply drew their power from the PCIe slot. The ASUS EN7800 GT Top Silent, our most powerful card, required a 6-pin PCI Express power connector, and it's no surprise that we saw the highest power draw from this card.

We tested power by measuring the total wattage of the system with each card installed in two different states. The first state is while the system is idle, without any programs running, and the second state is under load, by running a graphically intensive benchmark. The benchmark we used to stress the graphics cards was 3DMark06, specifically, the fill rate (single and multi-texturing) and the pixel shader tests.

Idle Power

We see initially how while idle, the system draws less power than what you might expect to see for some of these graphics cards. The highest idle power level we see is 135 watts for the Asus 1600 XT and 7800 GT, as well as the Gigabyte 7300 GT and X1300 Pro. The ASUS 7600 GS 512 gets the lowest idle power wattage, which is somewhat interesting as it certainly isn't the least powerful card. With a total difference in idle power of only 10W, though, most of the cards are doing a good job under idle conditions. Let's see what happens when we actually put the cards to work.

Load Power

As expected, the ASUS 7800 GT gives the system a significantly higher power draw under load, followed by the Gigabyte 7600 GT, the second most powerful card. The fact that these two cards are the most power-hungry makes sense, as does the fact that the ASUS 6600 GT gets a similarly high load wattage, since this is an older, less efficient part. The Gigabyte X1300 draws the least amount of power under load; this isn't surprising given its low performance, though the Sparkle 7300 GS Ultra 2 is somewhat more power-hungry in spite of the fact that it performs about the same. The Gigabyte 7300 GS, another low-performance card, gets an even higher wattage due to its faster memory.

Aside from the few highest performance cards, all of these cards get very similar results in terms of power draw. This similarity and consistency in power draw among all of these cards seems to say something about the design of silent cards in general. While it is technically possible to cool more power hungry GPUs with a fanless solution, most manufacturers are targeting lower heat GPUs for their silent cards, as the cooling solutions do not need to be as extravagant (or costly).

Heat

As we touched on in the introduction, controlling heat levels is essential to the smooth operation of a graphics card. Because there are no moving parts in any of these cards, their heat sinks must be designed to provide adequate heat dissipation over long time periods, as most people don't sit down to play games for only a few minutes at a time. Whether or not these silent cards run cool or hot will depend not only on the card, but on things like your case ventilation and environment in general. Also, heat levels may vary even among different parts of the same model, but we can get a general idea of the heat that will be generated by these different cards while idle and under stress.

Similar to the way we tested power consumption, we measured the heat level of the card in two different states: idle and after five minutes of stress testing. In order to stress test the card, we would traditionally measure heat levels after a few looped game benchmarks but for this review, we made use of ATI Tool's "Scan for Artifacts" function on their "fuzzy cube" 3D view. This came in very handy for us, because it stresses both ATI and NVIDIA cards by basically drawing a 3D cube with some kind of fuzz map over and over. We found that about five minutes of "scanning" with this tool gave us the same level of stress as running our usual number of Splinter Cell: Chaos Theory benchmark loops, only it was much easier to accomplish the stress testing.

Unfortunately, we weren't able to include any ATI cards in our heat tests, because apparently none of these cards have on-die temperature sensors to give us heat level readings. We were able to use NVIDIA's built-in heat meter in the driver to get readings from the NVIDIA cards, however, so we will look at these numbers for now.

Idle Heat

Something we see right away is that the EVGA 7600 GS has a much lower idle temperature than the other cards. The Albatron 7300 GT gets a fairly low temperature while idle, and interestingly the tiny Sparkle 7300 GS Ultra 2 gets the highest idle temperature of the group.

Load Heat

Unsurprisingly, the ASUS 7800 GT gets a dramatically higher temperature than the rest of the cards while under load -- high enough to perhaps warrant some concern. Generally, a core temperature this high is bad news, but it would seem the ASUS EN7800 GT Top Silent was designed to be able to handle temperatures this high. This might be an issue however for someone with poor case ventilation or those who live in a very hot climate without conventional cooling in their building.

The two coolest operating cards under load are the same ones that were the coolest while idle: the Albatron 7300 GT and EVGA 7600 GS, with the Albatron card running slightly cooler. Again we see that the Sparkle 7300 GS Ultra 2 generates quite a bit of heat considering its small size and low performance, though the small size is the likely culprit. The high heat and power load for this card are both negatives, and since it performs very poorly in most of the games the only plus the Sparkle 7300 GS Ultra 2 has going for it is it's small size. It will fit in just about any computer case, no matter how small or crowded it is. This isn't saying much for the card however, and unless you can find it for a ridiculously low price we don't recommend buying one.

Lower Quality Performance Final Words
Comments Locked

49 Comments

View All Comments

  • yyrkoon - Thursday, August 31, 2006 - link

    If its silly, why even bother replying . . . No need to go out of your way to be a jerk.
  • nullpointerus - Friday, September 1, 2006 - link

    Jerks don't take the time to apologize. As for why I apologized, I felt badly for responding in kind. I was belittling people who felt the need to belittle the site without taking the trouble to think their arguments through. Apparently that put some kind of chip on your shoulder such that you felt the need to attack me after I'd already apologized.
  • DerekWilson - Friday, September 1, 2006 - link

    maybe we can take a different angle as the standard reasoning has been rolled out already ...

    if we decide to test with a system that "matches" the graphics card, we are making a decision about what is reasonable for either a specific level of performance or price point. By making such a decision, we limit ourselves -- for instance, in this review we may have chosen a system to match a 7600 GS. But maybe it's too under powered for a 7600 GT, or perhaps its too overpriced for a 7300 GS.

    we absolutely can't test every card with every processor and every memory configuration on every chipset for every review.

    en lieu of choosing one system that is supposed to be a "one size fits all", we can remove the system from consideration by choosing the highest end configuration possible.

    when a graphics card peforms better in our system, we know it is capable of better performance in any system. this is true in almost every case.

    this does put a burden on the reader to understand the limitations of his or her own system -- i.e., will the fact that the 7600 GT performs higher than 7600 GS expose a CPU limitation on the system the reader is building/upgrading.

    this question can be answered in a couple ways.

    with game tests, if you can borrow a high end graphics card and see where the cpu limitation falls at something like 800x600 without aa and af, you'll know where the upper limit on framerate is based on the CPU. thus a decision can be made about the best fit for a card.

    if you can't borrow a higher end card, you can turn all the graphics settings down as far as possible and run at 640x480 or lower if possible (does anything aside from the chronicles of riddick still support 320x240?). this isn't ideal, but even on a low end card you can get a pretty good idea of whether or not there will be a cpu limitation entering into the mix.

    when you know what the cpu limit of your system is, pick the resolution you want to run, and find a card that gives you a number just over this limit. this card is the ideal fit for your system at your resolution. it will deliver the performance your cpu will ask for.

    I know its complicated, but its much better than the can of worms we'd open if we went in another direction.

    In GPU reviews meant to demonstrate the capabilities of a graphics card, we will not add unnecessary bottlenecks to the system.
  • nullpointerus - Friday, September 1, 2006 - link

    You need a form letter, or something. Maybe you could put up a short page entitled Why We Test this Way and link to it on the front page of each article.
  • nullpointerus - Thursday, August 31, 2006 - link

    Hmm...that last paragraph came out a little too harsh. I apologize in advance if I've offended anyone. I still think the points are valid, though.
  • JarredWalton - Thursday, August 31, 2006 - link

    If you look at the performance difference between an E6400 stock and 3.0 GHz OC in our http://www.anandtech.com/systems/showdoc.aspx?i=28...">PC Club system review, you will see that it makes virtually no difference in performance even with a 7900 GT. All of these GPUs are the bottleneck in gaming, but we use a higher-end (relatively speaking) CPU just to make sure.
  • imaheadcase - Thursday, August 31, 2006 - link

    I disagree 800x600 is great for sniping, i play on a 9700 Pro and normally switch between 800x600 and 1024x768 and like 800x600 better on large maps. It brings the objects "bigger" to me and lets me get better accuracy.

    Even if i had a 7900GT i would prob not go higher than 1024x768. Don't know why people play at higher rez, makes everything so tiny. Squinting to play a game is annoying and distracting from gameplay :D
  • Josh7289 - Thursday, August 31, 2006 - link

    People who have larger monitors have to use higher resolutions to keep things from getting too large, and to make good use of all that real estate, especially when it's an LCD (native resolution).

    For example, a 17" CRT is best run at 1024 x 768 for games, while a 21" or so LCD is best run at 1600 x 1200 or 1680 x 1050, depending on its native resolution.
  • Olaf van der Spek - Thursday, August 31, 2006 - link

    What do you mean with 'too large'?
    In games it's not like in Windows where objects get smaller if you increase the resolution.
  • DerekWilson - Thursday, August 31, 2006 - link

    this is correct (except with user interfaces for some reason -- and there the exception is warcraft 3). thanks Olaf.

    lower resolution will give you much less accuracy -- larger pixels in the same screen area decrease detail.

    the extreme example is if you have a 4x3 grid and you need to snipe someone -- his head has to be in the center of one of the 12 blocks you have to aim through to even be able to hit him. The smaller these blocks are, the more pixels fit into the head, the more capable you will be of sniping.

Log in

Don't have an account? Sign up now