Micro CPU benchmarks: isolating the FPU

But you can't compare an Intel PC with an Apple. The software might not be optimised the right way." Indeed, it is clear that the Final Cut Pro, owned by Apple, or Adobe Premiere, which is far better optimised for the Intel PC, are not very good choices to compare the G5 with the x86 world.

So, before we start with application benchmarks, we performed a few micro benchmarks compiled on all platforms with the same gcc 3.3.3 compiler.

The first one is flops. Flops, programmed by Al Aburto, is a very floating-point intensive benchmark. Analyses show that this benchmark contains:
  • 70% floating point instructions;
  • only 4% branches; and
  • Only 34% of instructions are memory instructions.
Note that some of those 70% FP instructions are also memory instructions. Benchmarking with Flops is not real world, but isolates the FPU power.

Al Aburto, about Flops:
" Flops.c is a 'C' program which attempts to estimate your systems floating-point 'MFLOPS' rating for the FADD, FSUB, FMUL, and FDIV operations based on specific 'instruction mixes' (see table below). The program provides an estimate of PEAK MFLOPS performance by making maximal use of register variables with minimal interaction with main memory. The execution loops are all small so that they will fit in any cache."
Flops shows the maximum double precision power that the core has, by making sure that the program fits in the L1-cache. Flops consists of 8 tests, and each test has a different, but well known instruction mix. The most frequently used instructions are FADD (addition), FSUB (subtraction) and FMUL (multiplication). We used gcc -O2 flops.c -o flops to compile flops on each platform.

MODULE FADD FSUB FMUL FDIV Powermac G5 2.5 GHz Powermac G5 2.7 GHz Xeon Irwindale 3.6 GHz Xeon Irwindale 3.6 w/o SSE2* Xeon Galatin 3.06 GHz Opteron 250 2.4 GHz
1 50% 0% 43% 7% 1026 1104 677 1103 1033 1404
2 43% 29% 14% 14% 618 665 328 528 442 843
3 35% 12% 53% 0% 2677 2890 532 1088 802 1955
4 47% 0% 53% 0% 486 522 557 777 988 1856
5 45% 0% 52% 3% 628 675 470 913 995 1831
6 45% 0% 55% 0% 851 915 552 904 1030 1922
7 25% 25% 25% 25% 264 284 358 315 289 562
8 43% 0% 57% 0% 860 925 1031 910 1062 1989
Average: 926 998 563 817 830 1545

The results are quite interesting. First of all, the gcc compiler isn't very good in vectorizing. With vectorizing, we mean generating SIMD (SSE, Altivec) code. From the numbers, it seems like gcc was only capable of using Altivec in one test, the third one. In this test, the G5 really shows superiority compared to the Opteron and especially the Xeons.

The really funny thing is that the new Xeon Irwindale performed better when we disabled support for the SSE-2, and used the "- mfpmath=387" option. It seems that the GCC compiler makes a real mess when it tries to optimise for the SSE-2 instructions. One can, of course, use the Intel compiler, which produces code that is up to twice as fast. But the use of the special Intel compiler isn't widespread in the real world.

Also interesting is that the 3.06 GHz Xeon performs better than the Xeon Irwindale at 3.6 GHz. Running completely out of the L1-cache, the high latency (4 cycles) of the L1-cache of Irwindale hurts performance badly. On the Galatin Xeon, which is similar to Northwood, Flops benefits from the very fast 2-cycle latency.

The conclusion is that the Opteron has, by far, the best FPU, especially when more complex instructions such a FDIV (divisions) are used. When the code is using something close to the ideal 50% FADD/FSUB and 50% FMUL mix and is optimised for Altivec, the G5 can roll its muscles. The normal FPU is rather mediocre though.

Micro CPU benchmarks: isolating the Branch Predictor

To test the branch prediction, we used the benchmark " Queens". Queens is a very well known problem where you have to place n chess Queens on an n x n board. The catch is that no single Queen must be able to attack the other. The exhaustive search strategy for finding a solution to placing the Queens on a chess board so they don't attack each other is the algorithm behind this benchmark, and it contains some very branch intensive code.

Queens has about:
  • 23% branches
  • 45% memory instructions
  • No FP operations
On a PIII, the Branch misprediction rate is up to 19%! (Typical: 9%) Queens runs perfectly in the L1-cache.

RUN TIME (sec)
Powermac G5 2.5 GHz 134.110
Xeon Irwindale 3.6 GHz 125.285
Opteron 250 2.4 GHz 103.159

At 2.7 GHz, the G5 was just as fast as the Xeon. It is pretty clear that despite the enormous 31 stage pipeline, the fantastic branch predictor of the "Xeon Pentium 4" is capable of keeping the damage to a minimum. The Opteron's branch predictor seems to be at the level of G5's: the branch misprediction penalty of the G5 is 30% higher, and the Opteron does about 30% better.

The G5 as workstation processor

It is well known that the G5 is a decent workstation CPU. The G5 is probably the fastest CPU when it comes to Adobe After Effects and Final Cut Pro, as this kind of software was made to be run on a PowerMac. Unfortunately, we didn't have access to that kind of software.

First, we test with Povray, which is not optimised for any architecture, and single-threaded.

Povray
Seconds
Dual Opteron 250 (2.4 GHz) 804
Dual Xeon DP 3.6 GHz 1169
Dual G5 2.5 GHz PowerMac 1125
Dual G5 2.7 GHz PowerMac 1049

Povray runs mostly out of the L2- and L1-caches and mimics almost perfectly what we have witnessed in our Flops benchmarks. As long as there are little or no Altivec or SSE-2 optimisations present, the Opteron is by far the fastest CPU. The G5's FPU is still quite a bit better than the one of the Xeon.

The next two tests are the only 32 bit ones, done in Windows XP on the x86 machines.

Lightwave 8.0
Raytrace
Lightwave 8.0
Tracer Radiosity
Dual Opteron 250 (2,4 GHz) 47 204
Dual Xeon DP 3,6 GHz 47.3 180
Dual G5 2,5 GHz PowerMac 46.5 254

The G5 is capable of competing in one test. Lightwave rendering engine has been meticulously optimised for SSE-2, and the " Netburst" architecture prevails here. We have no idea how much attention the software engineers gave Altivec, but it doesn't seem to be much. This might of course be a result of Apple's small market share.

Cinema 4D
Cinebench
Dual Opteron 250 (2.4 GHz) 630
Dual Xeon DP 3.6 GHz 682
Dual G5 2.5 GHz PowerMac 638
Dual G5 2.7 GHz PowerMac 682

Maxon has invested some time and effort to get the Cinema4D engine running well on the G5 and it shows. The G5 competes with the best x86 CPUs.

Benchmark configuration The G5 as Server CPU
Comments Locked

116 Comments

View All Comments

  • michael2k - Friday, June 3, 2005 - link

    Well, it shouts to stay away from the XServe unless you happen to have vectorizable code that you have the resources to properly vectorize!
  • erwos - Friday, June 3, 2005 - link

    Excellent comparison of the platforms, although I actually wish they would have spent more time analyzing the graphs.

    Like the others, I would have liked to see a G5 / Linux benchmark (now that FC4 has a PPC version, you could run a fairly reasonable one), but I do admit it's not a very popular option compared to x86. My curiosity is whether MacOS X is the problem, or whether it's some sort of issue with the CPU itself. Seems unlikely the G5 would have such a fundamental flaw, but it does shout to stay the hell away from the Xserve until these issues are resolved.

    -Erwos
  • Thresher - Friday, June 3, 2005 - link

    As the owner of intel, AMD, and Mac based computers, I have to say this is one of the best and most thorough comparisons I've seen.

    You did an excellent job of isolating CPU and OS performance.

    That being said, if performance were the only indicator, there is no doubt in my mind that AMD would be ruling the roost. However, personal preferences come into play to a great deal. Businesses like the reputation behind intel. I prefer the usability of Mac OS X. People have strong feelings about Microsoft that may color their decisions.

    When it comes down to it, performance is important, but not the only reason people buy what they buy. I would say more often than not, the decision is made with only a modicum of logic.
  • Cruise51 - Friday, June 3, 2005 - link

    I'd be interested in seeing how it performs on yellowdog aswell.
  • IntelUser2000 - Friday, June 3, 2005 - link

    People, in case some of you misunderstand, the 10.8GB/sec Full Duplex bus means that its two 32-bit 1350MHz bus, rather than one 64-bit bus in the PCs. Its not, 10.8GB/sec x 2 =21.6GB/sec bus, its 10.8GB/sec bus(or more correctly stated 5.4GB/sec x 2). Plus, it says in Apple site that it has TWO(yes two!!!) of the 10.8GB/sec buses, per CPU.

    Summary: Per CPU=10.8GB/sec
    Per Dual Processor System=21.6GB/sec


    Johan, about the AMD TDP number, they never state that its max power, they say its maximum power achievable under most circumstances, its not absolute max power.
  • JohanAnandtech - Friday, June 3, 2005 - link

    Porkster: It is a little geekisch Unix joke. Where is your geekish you man spirit?

    Wessonality: Our next project if we can keep the G5 long enough in the labs.

    Ailleur2: indeed, I agree. The G5 is a potent CPU with a lot of potential. Just give it a bigger L2 and a better memory subsystem. This is an architecture that could last very long by applying a few tweaks, like the P6.

    Methodical: All of the benchmarks are trustworthy, they should be looked upon as a whole to get a good picture, not just pick one. About After affects, I indicate that the G5 does very well here (seen other reports on the web), I just didn't have the software in the lab.

    I also warned that this was not about "should I buy an Apple or not?". It is just "if performance is what counts for me, where should I position the G5/Mac os X combiantion compared to x86/Linux/Windows ?".

  • StuckMojo - Friday, June 3, 2005 - link


    hmph. you say it yourself in the last paragraph...how come you didn't try it?
  • StuckMojo - Friday, June 3, 2005 - link

    yes, it seems you've left out a very good method of testing if OSX is the issue: run a powerPC linux distro with the mysql and apache benchmarks and see what happens!

    i'd be _really_ interested in the results. see if you can update the article with them.
  • porkster - Friday, June 3, 2005 - link

    "Root Me" in Australian slang is the same as "Fxxk Me" in common language. Some people my find a picture in this review offensive.
  • wessonality - Friday, June 3, 2005 - link

    What about installing Yellow Dog Linux on the XServe?

Log in

Don't have an account? Sign up now