Price comparison & Final Words

In previous articles, we've taken a look at the cost of the processor itself. Since servers aren't just about the processor, we've taken our pricing to an entire platform. We've attempted to spec out Intel and AMD servers from 2 different vendors and have them as close as possible in terms of features. There are obviously a few differences here and there, but as illustrated below, the price difference is negligible between either platform when taking into account the features missing on either platform. Note that we are comparing Dual Intel 3.6 1MB L2 based servers against Dual Opteron 250 servers, since the newer products that we have discussed in this article are not yet in the retail channel.

   HP ProLiant DL360 SCSI  HP ProLiant DL145 SCSI  IBM xSeries 336  IBM eServer 326
Platform Intel AMD Intel AMD
CPU Dual 3.6 GHz 1MB L2 Dual Opteron 250 (2.4GHz) Dual 3.6 Ghz 1MB L2 Dual Opteron 250 (2.4 GHz)
Memory 2GB 2GB 2GB 2GB
Hard Drive 36.4 Pluggable Ultra320 (15,000 RPM) 36.4 Non Pluggable Ultra320 (15,000 RPM) IBM 36GB 2.5" 10K SCSI HDD HS 36GB 10K U320 SCSI HS Option
SCSI Controller Smart Array 6i Plus controller (onboard) Dual Channel Ultra 320 SCSI HBA Integrated Single-Channel Ultra320 SCSI Controller (Standard) Integrated Single-Channel Ultra320 SCSI Controller (Standard)
Bays Two Ultra 320 SCSI Hot Plug Drive Bays Two non-hot plug hard drive bays 4 hot swap bays 2 hot swap bays
Network NC7782 PCI-X Gigabit NICs (embedded) Broadcom 5704 Gigabit Nics (embedded) Dual integrated 10/100/1000 Mbps Ethernet (Standard) Dual integrated 10/100/1000 Mbps Ethernet (Standard)
Power 460W hot pluggable power supply 500W non hot plug power supply 585W power supply 411W Power Supply (Standard)
Server Management SmartStart & Insight Manager None System Management Processor (Standard) System Management Processor (Standard)
OS None None None None
Cost $5,946 $5,009 $5,476 $5,226

Final words

We've illustrated how workload has a significant effect on platform decision when it comes to database servers. Obviously, for a small to medium business, where there are multiple different workloads being run on the same server, the decision to go with a platform architecture best suited for Data warehousing alone doesn't make sense. But for larger organizations where multiple database servers are used, each having a specific purpose, the decision to go with one platform or another could have a significant impact on performance. For dual-processor applications, Intel leads the way in everyday small to heavy transactional applications, whereas AMD shines in the analytical side of database applications "Data Warehousing".

These results do raise some questions as to what is going on exactly during each test at an architectural level. Is the processor waiting for data from the L2 cache? Is the processor branch prediction units not suited for this particular workload? Is there a bottleneck with memory latency? We want these questions answered, and are going to investigate ways to provide concrete answers to these tough questions in the future.


Data Warehouse results
Comments Locked

97 Comments

View All Comments

  • Jason Clark - Monday, February 14, 2005 - link

    An article we are contemplating is desktop parts in a SQL test, and web. Lots of folks in smaller orgranizations and even medium to some extent build their own boxes.

    Interesting?
  • Regs - Monday, February 14, 2005 - link

    Thanks for Clarifying me #24. For some odd reason I'm thinking about the differences between the branch predicator of a A64 and Intel and I got in over my head.

    But you are right about the cache, spatial and temporal locality.
  • rivieracadman - Monday, February 14, 2005 - link

    I would suspect that the raw speed of the Xeon coupled with the larger cash to reduce latency would make the Xeon perform well in any benchmark that was both threaded and delt with small data sets, such as reads, queries, and searches. On the other hand, the Opteron due to its lower memory access overhead, and shear bandwidth, would do better in areas with large data sets such as data transfers, data recovery, and large complex calculations. If this is correct, which you have pretty much confirmed, then I would suspect that the Opteron would do better in the web server tests as long as the pages served were larger then say 15K. Not that this is any magical number, but the Xeon would have to pull from memory more at this point.

    As for the HT bus. I wouldn't think you would use the entire 1Ghz bus on a database benchmark. You really need to perform some workstation benchmarks to fill the bus.

    Since everyone else here is adding to the wish list. I would like to see a real world combined query, read, change, write benchmark. I think the Xeon does better when searching and reading because of its shear speed, but the Opteron would do better when a record is altered and resubmitted to a database. This is more of a real world example in my opinion, and since both are architectually diffrent, it would allow for both CPUs to show their true colors in what would be considered every tasks.
  • blckgrffn - Monday, February 14, 2005 - link

    Having repetitive data is what having cache is all about, the long pipelined architecture of the P4 needs the large local cache to minimize time-expensive ram lookups to compensate for the time-expensive deep pipe operations that get tossed when mis-predicted. So, the 2meg cache could help the prescott in many places and is not limited only to SQL. I think that we can probably look at the the EE P4's and get a feeling for what the new prescotts will bring to the table, but we can hope that all of those additions that were made to the Prescott core are allowed to shine with more cache present.
  • fitten - Monday, February 14, 2005 - link

    #9, this was a server benchmark test. Servers are about stability and such. Anyone who overclocks a critical server (database, etc.) should be fired on the spot.

    They may do overclocking tests in the workstation review that was mentioned.
  • Ross Whitehead - Monday, February 14, 2005 - link

    #20 - I agree the AMDs instructions/clock count is high, but we were surprised that the 25% increase in HT did not provide any measurable difference.
  • Regs - Monday, February 14, 2005 - link

    *Their IPC counts are higher*

    Need more coffee
  • Regs - Monday, February 14, 2005 - link

    #11 - I doubt there will be a performance gain for games with just added cache. The problem with the prescott is it's low IPC core and leakage. Anyways, Apps on the desk top use a lot of repeatedly used data arrays with similar instruction sets. So why would the CPU core benefit a larger L2 cache for games when it's just going to be the similar type of code it just processed?

    #16 - AMD's are not bandwidth starved. Their high instructions per clock count are higher. So the pipeline is a lot shorter which means it does not run a risk of pipeline stalls if it was not fed enough data from the bus unlike the Intel.
  • Jason Clark - Monday, February 14, 2005 - link

    mickyb,
    Quad 3.6 Xeon systems don't exist as far as I know, correct me if I'm wrong. Quad Xeon systems are still the 400MHz FSB Xeons that are clocked at most 3GHz.
  • mickyb - Monday, February 14, 2005 - link

    The Intel XEON has always been competitive. You guys are thinking about gaming. I would like to see 4 way perforamnce and see a graph on benchmarks compared to number of CPUs. AMD has previously done well in this area.

Log in

Don't have an account? Sign up now