Power Results (15W and 25W)

Based on the SKU table, Intel was very keen to point out that all of the Y-series processors for Ice Lake and all the 15W U-series processors have cTDP up modes. This means that OEMs, if they build for it, can take advantage of a higher base power of a processor which leads to longer turbo periods and a higher frequency during sustained performance levels.

While cTDP is a good idea, one of the issues we have with the concept is that Intel’s OEM partners that design the laptops and notebooks for these processors don’t ever advertise or publicise if they’re using a CPU in cTDP up or down mode. I could understand why a vendor might not want to advertise using a down mode, but an up mode means extra performance, and it’s hard to tell from the outside what is going on.

For what it is worth, most users cannot change between these modes anyway. They are baked into the firmware and the operating system. However there are a few systems that do expose this to the user, as I recently found out with my Whiskey Lake-U platform, where the OS power plan has advanced options to set the TDP levels. Very interesting indeed.

Also, for Ice Lake-U, Intel is introducing a feature called Intel Dynamic Tuning 2.0.

We covered this in our architecture disclosure article, but the short and simple of it is that it allows OEMs to implement a system whereby the PL1/TDP of a system can change based on an algorithm over time. So it allows for higher strict turbo, and then adjusts the turbo budget over time.

This feature will be branded under Intel’s Adaptix brand, which covers all these CPU optimizations. However, it should be noted, that this feature is optional for the OEM. It requires the OEM to actually do the work to characterize the thermal profile of the system. We suspect that it will be mostly on premium devices, but as the chips roll out into cheaper systems, this will not be there. Intel is not making this feature standard.

Testing Power

Based on the time available, we weren’t able to do much power testing. What I was able to do was run a power profile during the start of our 3DPM AVX512 test in both 15W and 25W modes for the Core i7-1065G7.

The test here runs for 20 seconds, then rests for 10 seconds. Here are the first four sub-tests, and there are a lot of interesting points to note.

The peak power in these systems is clearly the PL2 mode, which on the Intel SDS platform seems to be around the 50W mode. Given that the functional test system is a bit of a chonk, with a strong thermal profile and the fan on all the time, this is perhaps to be expected. The suggested PL2 for Kaby Lake-R was 44W, so this might indicate a small jump in strategy. Of course, with the Kaby Lake-R designs, we never saw many devices that actually had a PL2 of 44W – most OEMs chose something smaller, like 22W or 35W.

The fact that the CPU can sustain a 50W PL2 means that Intel could easily release Ice Lake into the desktop market at the 35W range. Easy. Please do this Intel.

Second to note is the AVX-512 frequency. Not listed here, but under the 15W mode we saw the AVX-512 frequency around 1.0-1.1 GHz, while at 25W it was around 1.4-1.5 GHz. That’s quite a drop from non AVX-512 code, for sure.

Third, we come to the turbo window. Increasing the base TDP means that the turbo window has more budget to turbo, and we can see that this equates to more than 2x on all the sub-tests. In the 15W mode, on the first test, we blow through the budget within 5 seconds, but on the 25W mode, we can actually turbo all the way through the 20 seconds of the first test. This means that there is still technically budget on the table by the time we start the second test under the 25W mode.

Also, that third test – if you are wondering why that graph looks a little light on the data points compared to the others, it is because the AVX-512 instructions took so much of the time on the CPU, that our power software didn’t get any for itself to update the power values. We still got enough to make a graph, but that just goes to show what hammering the CPU can do.

For the base power consumption, we actually have an issue here with the observer effect. Our polling software is polling too often and spiking up the power a little bit. However, if we take the average power consumption between 25-30 seconds, under 25W this is 2.96W, and under 15W this is 2.87W, which is similar.

For users interested in the score differential between the two:

For 3DPM without AVX instructions, the 15W mode scored 816, and 25W mode scored 1020 (+25%).
For 3DPM with AVX-512, the 15W mode scored 7204, and 25W mode scored 9242 (+28%).

SPEC2017 and SPEC2006 Results (15W) System Results (15W)
Comments Locked

261 Comments

View All Comments

  • 0ldman79 - Friday, August 2, 2019 - link

    Uh...

    They reworked the entire 10nm process to get it going.

    This isn't impossible, it is expensive and time consuming.

    They've spent the $$$ and at least a year working on it.

    It is hardly unheard of that the single most successful tech company on the planet figured out a problem.
  • yeeeeman - Wednesday, June 17, 2020 - link

    This is not a reasonable argument that he gave you. He just wanted, like a lot of people today, to show his hate for Intel. He's not seeing things straight anymore and I really don't understand this hate speech that many people have today about certain products. It is what it is, reviewers test them and there is not much else to say. I guess the reason is more people are being stupid these days.
  • dguy6789 - Thursday, August 1, 2019 - link

    Stop whining. The article is well written and provides plenty of information on Intel's new chip. Nobody gives a hoot about your tinfoil hat nonsense.
  • close - Tuesday, August 6, 2019 - link

    @dguy6789, obviously plenty of people do. AT did somehow manage to bungle repeatedly, always in positive ways for Intel, not so positive for the competition.

    And as these things go, if it turns out AT's current article is spot on then not much will change (past mistakes were still made). But if it turns out they were played *again* (assuming ignorance not bad intentions) and AT offers the same anemic retraction then it's going to be pretty clear where the editorial team stands.
  • AshlayW - Thursday, August 1, 2019 - link

    You can't please everyone lol. I thought the article was great, informative and, imo, fair. Interesting to get a first look at the architecture and I enjoy reading your assessments on the results, puts it into context for me. :)

    I'm a pretty hardcore Ryzen fan too :P
  • MDD1963 - Friday, August 2, 2019 - link

    Yes, how *dare* anyone publish *anything* that could be read as positive about new recent Intel products' performance gains, and the sheer audacity to do so within less than a month of the Ryzen 3000 launch! :/
  • jospoortvliet - Friday, August 2, 2019 - link

    It might be an obvious marketing ploy (I agree with that assessment) and that can be pointed out but a journalist wouldn’t be doing their job any better by ignoring this opportunity... both amd and intel as well as NVIDIA play these games all the time.
  • brakdoo - Thursday, August 1, 2019 - link

    Yeah Intel is trying to give journalists more info than the public for the past few months/quarters so that these people think they are special because they are "insiders" (they don't have much else to be proud of).

    These journalists talked so much about IPC over these months but it turned out to be just BS because IPC is nothing without frequency (to a certain extent AMD did the same stupid IPC thing). It is obvious that the frequency issue is not just about 10 nm but instead it's caused by this messed up architecture. Otherwise Intel would just sell 14 nm Ice lake CPUs...

    They even fooled these tech sites with the graphics performance. It's barely faster than Iris plus 655.

    AMD had a bad history of weird journalist events and giving too much NDA info but Intel turned it into a real shitshow.
  • Gondalf - Thursday, August 1, 2019 - link

    Likely you have some problems with Sunny Cove that is clearly superior than Zen 2 even without fast desktop DRAM and without an insane amount of L3.
    Pretty certain you are trying to realize how fast will be Ice Lake EP in server space.
    The end of a dream??? Yes it is.

    Obviously Intel is preparing itself to finer nodes that will not allow fast clock speeds anymore but an intersting density instead.

    This review is a nice example of what will be the future Intel core performance cadence in the next two years.
    Many thanks Haifa Team.

    About GPU, it is pretty good because now it performs at 15W level and without an expensive eDRAM. Try to run the new GPU within 28W and you will have an idea of the advantages of the new ark vs. 9.5.
  • 0ldman79 - Friday, August 2, 2019 - link

    Brakdoo is way off in his assertions, but I believe you have rose colored glasses too.

    Intel got the efficient process working, not the high performance one. They still have 14nm planned out for another year at least.

    It isn't just the lithography that is the problem either, Sunny Cove is a different architecture, it just might not clock as high. We'll have to wait and see how that all works out.

    I do agree though, speeds are probably going to stall if not regress moving forward. It's just a lot of amps going through a tiny circuit. 14nm might have been the sweet spot to get the highest clock speeds. Smaller circuits will only get hotter carrying the same current. Unless they significantly lower power usage it is going to be a problem.

    Apparently .7v is the switching point for silicon semi-conductors, below that the transistors don't switch, so to go beyond 7nm or 5nm they're very likely going to have to move to a more conductive material to lower the switching point as well as resistance (heat buildup).

    Interesting times...

Log in

Don't have an account? Sign up now