Core: Performance vs. Today

Looking back at Anand’s original review, and at a time where CPU performance made a lot of difference for gaming frame rates at 1600x1200, the conclusion was quite startling.

Intel's Core 2 Extreme X6800 didn't lose a single benchmark in our comparison; not a single one. In many cases, the $183 Core 2 Duo E6300 actually outperformed Intel's previous champ: the Pentium Extreme Edition 965. In one day, Intel has made its entire Pentium D lineup of processors obsolete.

Imagine something like that happening today. (Actually, if you believe what we’ve been told, AMD’s upcoming AM4 platform with Zen and Bristol Ridge might make its current desktop platform obsolete, but that’s a slightly different discussion because of how integrated graphics has adjusted the landscape for CPU focused silicon somewhat.)

That’s Intel vs. Intel though, against AMD it was just as damning.

Compared to AMD's Athlon 64 X2 the situation gets a lot more competitive, but AMD still doesn't stand a chance. The Core 2 Extreme X6800, Core 2 Duo E6700 and E6600 were pretty consistently in the top 3 or 4 spots in each benchmark, with the E6600 offering better performance than AMD's FX-62 flagship in the vast majority of benchmarks.

However, Core 2 Duo has now been out for 10 years. I’ve pulled up some benchmark data from our database to see if we have any matches to compare against processors that cost $214 today. The Core i5-6600 fits our bill perfectly, and there are two benchmarks which match up. I’ve also dotted the graphs with a range of more recent AMD and Intel processors for progression.

3D Particle Movement: Single Threaded

3D Particle Movement: MultiThreaded

FastStone Image Viewer 4.9

Our 3D Particle Movement is more for idealized synthetic workloads, however FastStone is all about image conversion and favors high frequency, high single threaded performance.

Naturally, modern processors nearing 4.00 GHz have a large advantage over the 2.13 GHz version of Core 2 Duo, as well as multiple generations of improved microarchitecture designs and smaller lithography nodes for power efficiency. However, has any processor family had as much nostalgic longevity as the consumer launch of Core? One could argue that while Core put Intel on top of the heap again, Sandy Bridge was a more important shift in design and as a result, many users went from Conroe to Sandy Bridge and have stayed there.

Core: Load Me Up, but no Hyper-Threading or IMC Looking to the Future: International Technology Roadmap for Semiconductors 2.0 Report
Comments Locked

158 Comments

View All Comments

  • saratoga4 - Wednesday, July 27, 2016 - link

    >As we can see, by 2007 it was predicted that we would be on 10nm chips

    Should be 100 nm (0.1 microns).
  • Jehab - Wednesday, July 27, 2016 - link

    Yeah, that is a massive error, lol.
  • hammer256 - Wednesday, July 27, 2016 - link

    If I remember correctly, intel was running at 65nm in 2007 right? So I guess that was ahead of the curve at the time.
  • JlHADJOE - Saturday, July 30, 2016 - link

    And the 2001 ITR roadmap actually predicted 22nm for 2016. Despite the delays getting to 14/16nm the industry is actually way ahead of the curve.

    http://www2.lbl.gov/Science-Articles/Archive/ALS-E...
  • melgross - Wednesday, July 27, 2016 - link

    Exactly! I was going to post that myself. Once it's understood that it's actually 100nm, the other numbers make sense, otherwise, they don't.
  • Walkermoon - Wednesday, July 27, 2016 - link

    Just signed up to say the same.
  • Ian Cutress - Wednesday, July 27, 2016 - link

    Derp, I misread the table in a rush. Updated.
  • Pissedoffyouth - Wednesday, July 27, 2016 - link

    Could you bench it against an AMD A10 Kaveri? That would be good
  • Gc - Saturday, July 30, 2016 - link

    AMD A10-7800 (Kaveri) is in three of the bar charts on page 6. It appears to benefit from 4 cores in two of the comparisons.
  • Zaxx420 - Wednesday, July 27, 2016 - link

    Still have a E8400 rig that I use every day...with it o/ced to 4GHz, 8gb of DDR2-1066 and a OCZ Vertex 2 SSD plus it's 6mb of cache on a P45 mobo...it can hold its own to this day...easily. The E8000 series is one of the best 'future proof' cpus ever...next up imo will prove to be Sandy Bridge. Have a 2500K at 4.5GHz on a Z68 mobo, 16gb DDR3-2400 and a Samsung 850 Pro ssd...and now a GTX 1060...plays any game I want at 1080 and max quality...easily.

Log in

Don't have an account? Sign up now