Today marks a full 10 years since the first Core 2 Duo processors, and hence Intel’s 64-bit Core microarchitecture, were made officially available at retail. These included a number of popular dual-core processor parts, including the seemingly ubiquitous E6400 and the Core 2 Extreme X6800. These were built on Intel’s 65nm process, and marked a turning point in the desktop processor ecosystem. To quote Anand in our launch review: ‘you’re looking at the most impressive piece of silicon the world has ever seen’.

Ten Year Anniversary of Core 2 Duo and Conroe

As part of this piece we will also look at some of the predictions for the future, from the latest (and possibly last) International Technology Roadmap for Semiconductors report, which predicts the stalling of smaller silicon manufacturing nodes over the next 10-15 years.

The first part of this article borrows heavily from Johan’s original look into the Intel Core microarchitecture back in 2006. It’s an awesome read.

Back When I Were A Lad

For a number of our readers, the launch of Conroe was a vast change in the processing landscape. The family of Netburst, Northwood and Prescott processors, in the form of Pentium D and Pentium 4, showed that pursuing the frequency race pushed the silicon far outside its efficiency zone and left a hot, power hungry mess in its wake. It didn’t even come with a muscular V8 sound, and AMD’s Athlon 64 X2 line had taken both the performance and efficiency crown.


Core 2 Duo (left) vs Pentium D (right)

From the perspective of Intel, it had to incorporate a significant paradigm shift in the way it approached the core microarchitecture – no more long pipelines to bump up clock rates to start. The Core microarchitecture design was marketed as a blend of Pentium Pro and Pentium M techniques, as well as the Netburst architecture, however as Johan pointed out at the time, it is significantly Pentium M and it is very hard to find anything Netburst in there. It wasn’t as simple as ‘adding a few functional units or decoders on Yonah and calling it a day’, almost 80% of the architecture and circuit design had to be redone.

As part of this piece, we’re going to take another look at the original architecture improvements of the Core microarchitecture design and some of our old performance metrics from a decade ago.

27th July 2006: Core 2 Launch Day

Ten years ago, Intel launched the following five processors:

CPU Clock Speed L2 Cache
Intel Core 2 Extreme X6800 2.93GHz 4MB
Intel Core 2 Duo E6700 2.66GHz 4MB
Intel Core 2 Duo E6600 2.40GHz 4MB
Intel Core 2 Duo E6400 2.13GHz 2MB
Intel Core 2 Duo E6300 1.86GHz 2MB

The X6800 sits at the top with a higher clock speed with a higher supported FSB-to-core ration than previous Intel processors. The Core 2 processors all came from a 143mm2 die, compared the 162mm2 of Pentium D, and they both seem tiny by comparison to the large die sizes we see 2016 for things like the P100. These were chips without integrated graphics either. The introduction of Core 2 pushed the prices of the Pentium D processors down, to give this interesting table:

CPU Clock Speed L2 Cache Price
Intel Core 2 Extreme X6800 2.93GHz 4MB $999
Intel Core 2 Duo E6700 2.66GHz 4MB $530
Intel Core 2 Duo E6600 2.40GHz 4MB $316
Intel Core 2 Duo E6400 2.13GHz 2MB $224
Intel Core 2 Duo E6300 1.86GHz 2MB $183
Intel Pentium D 945 3.40GHz 2MBx2 $163
Intel Pentium D 915 2.80GHz 2MBx2 $133
Intel Pentium D 820 2.80GHz 1MBx2 $113
Intel Pentium D 805 2.66GHz 1MBx2 $93

Comparing this to recent Intel processors, and the X8600 matches the list price of the Core i7-5960X (an 8-core part), whereas the popular Core 2 Duo E6400 at $224 at the same price as the Core i5-6600.

A few years ago, I salvaged a super old computer of mine with an E6400 and took it for a spin for a pipeline piece entitled ‘Dragging Core 2 Duo into 2013’. We know that a number of users today are still using the old platform as their day to day machine, and given that it is now celebrating its 10th birthday, it is interesting that anyone wanting to play around with the old hardware can get a motherboard, memory and CPU from eBay for $50-70.

My crusty C2D Setup from 2013

 

 

 

Core: It’s all in the Prefetch, and More Cache Please
Comments Locked

158 Comments

View All Comments

  • saratoga4 - Wednesday, July 27, 2016 - link

    >As we can see, by 2007 it was predicted that we would be on 10nm chips

    Should be 100 nm (0.1 microns).
  • Jehab - Wednesday, July 27, 2016 - link

    Yeah, that is a massive error, lol.
  • hammer256 - Wednesday, July 27, 2016 - link

    If I remember correctly, intel was running at 65nm in 2007 right? So I guess that was ahead of the curve at the time.
  • JlHADJOE - Saturday, July 30, 2016 - link

    And the 2001 ITR roadmap actually predicted 22nm for 2016. Despite the delays getting to 14/16nm the industry is actually way ahead of the curve.

    http://www2.lbl.gov/Science-Articles/Archive/ALS-E...
  • melgross - Wednesday, July 27, 2016 - link

    Exactly! I was going to post that myself. Once it's understood that it's actually 100nm, the other numbers make sense, otherwise, they don't.
  • Walkermoon - Wednesday, July 27, 2016 - link

    Just signed up to say the same.
  • Ian Cutress - Wednesday, July 27, 2016 - link

    Derp, I misread the table in a rush. Updated.
  • Pissedoffyouth - Wednesday, July 27, 2016 - link

    Could you bench it against an AMD A10 Kaveri? That would be good
  • Gc - Saturday, July 30, 2016 - link

    AMD A10-7800 (Kaveri) is in three of the bar charts on page 6. It appears to benefit from 4 cores in two of the comparisons.
  • Zaxx420 - Wednesday, July 27, 2016 - link

    Still have a E8400 rig that I use every day...with it o/ced to 4GHz, 8gb of DDR2-1066 and a OCZ Vertex 2 SSD plus it's 6mb of cache on a P45 mobo...it can hold its own to this day...easily. The E8000 series is one of the best 'future proof' cpus ever...next up imo will prove to be Sandy Bridge. Have a 2500K at 4.5GHz on a Z68 mobo, 16gb DDR3-2400 and a Samsung 850 Pro ssd...and now a GTX 1060...plays any game I want at 1080 and max quality...easily.

Log in

Don't have an account? Sign up now