Looking To The Future: NAND Flash Scales Up to 64 TB SSDs in 2030

Over the past few years, the NAND Flash industry has gone through two major shifts in technology: the movement from 1 to 2 to 3 bits per cell, which directly increases bit density and capacity, and also moving from planar flash to variants of 3D stacking. Stacking can refer to individual NAND dies, as well as stacking those dies into a single package: both of these features are being extensively investigated to increase density also. There are two main drivers for this: reduction in cost, and capacity. However, despite this, the predictions in the ITRS report for NAND flash are primarily looking at improvements to numbers of layers rather than lithography changes or moving to more bits per cell.

As we can see, TLC (according to the report) is here to stay. QLC, or whatever you want to call it, is not mentioned. The two changes are the number of memory layers, moving from 32 today to 128 around 2022 and then 256/512 by 2030, and the number of word-lines in one 3D NAND string. This gives a product density projection of 256 Gbit packages today to 1 Tbit packages in 2022 and 4 Tbit packages in 2030.

If we apply this to consumer drives available today, we can extrapolate potential SSD sizes for the future. The current Samsung 850 EVO 4 TB uses Samsung’s 48-layer third generation V-NAND to provide 256 Gbit TLC parts. Alongside the 4 TB of memory, the controller requires 4 GB of DRAM, which is another concern to remember. So despite the report stating 256 Gbit in 32-layer, we have 256 Gbit in 48-layer, which is a difference primarily in die-size predictions for the report. Still, if we go off of the product density we should see 12 TB SSDs by 2020, 16 TB in 2022, 48 TB in 2028 and 64 TB drives in 2030. It’s worth noting that the ITRS report doesn’t mention power consumption in this table, nor controller developments which may be a substantial source of performance and/or capacity implementations.

Looking To The Future: 450mm Wafers in 2021, and Down to ‘2nm’ Looking To The Future: Mobile with 32 CPU Cores and 8K Displays
Comments Locked

158 Comments

View All Comments

  • Nameofuser44 - Wednesday, August 3, 2016 - link

    Here I thought I was the only slow poke to not give up my C2D (4300) & ATI 5770 / 2GB ram /as a daily driver. Well here's to ten wonderful years!
  • rarson - Thursday, August 4, 2016 - link

    I'm still using a Core 2 Duo E8600 in my desktop. In an Abit P-35 Pro motherboard. The damn thing just works too well to get rid of, and I love the Abit board.
  • rarson - Thursday, August 4, 2016 - link

    Durr, it's the IP35 pro, P35 chipset.
  • skidaddy - Friday, August 5, 2016 - link

    My 10 year old E6600 with EVGA board & EVGA/NVIDIA 295 video card is also a great space heater. CUDA on card extended utility of set up. Only limitation is no CPU video decoding limits streaming to 1440. Waiting for the Intel Kaby Lake or better on die Intel GPU to be able to handle 4K @ 60fps over HDMI not USB3(+).
  • BoberFett - Friday, August 5, 2016 - link

    I'm still rocking my C2D E6500. It does the job.
  • johnpombrio - Friday, August 5, 2016 - link

    The Core 2 architecture was developed in Israel by a Intel team working on mobile processors. Intel suddenly realized that they had a terrific chip on their hands and ran with it. The rest is history.
    http://www.seattletimes.com/business/how-israel-sa...
  • FourEyedGeek - Monday, August 8, 2016 - link

    How do you think one of those first Core processors would fare if fabricated at Intels 10nm process?

    Could they lower voltage or increase performance significantly?
  • Visual - Monday, August 8, 2016 - link

    So a 10 year old chip is about half the performance of today's price equivalent. I'd have hoped today's tech to be more like 10 times better instead of just 2.

Log in

Don't have an account? Sign up now