Looking to the Future:
International Technology Roadmap for Semiconductors 2.0

The ten year anniversary of Conroe comes at a time when the International Technology Roadmap for Semiconductors report into the next 10-15 years of the industry has been officially launched to the public. This biennial report is compiled by a group of experts in the semiconductor industry from the US, Europe and Asia and is designed to help the industry dictate which path to focus R&D for the next 10-15 years, and runs for nearly 500 pages. While we could go into extensive detail about the contents, we plan to give a brief overview here. But for people interested in the industry, it’s a great read for sure.

The report includes deep discussions regarding test equipment, process integration, radio frequency implementations (RF), microelectromechanical systems (MEMs), photolithography, factory integration, assembly, packaging, environmental issues, improving yields, modeling/simulation and emerging materials. With a focused path to a number of technologies, the hope is that leading contenders in each part of the industry can optimize and improve efficiency in directional research and development, with the possibility of collaboration, rather than taking many different routes.

Obviously such a report is going to make successful and unsuccessful predictions, even with a group of experts, based on the introduction of moonshot style features (FinFET) or unforeseen limitations in future development. For example, here is the first roadmap published by the Semiconductor Industry Association in the first report in 1993:


Original 1993 Semiconductor Industry Association roadmap

As we can see, by 2007 it was predicted that we would be on 10nm 100nm chips with up to 20 million ‘gates’, up to 4GB of SRAM per chip and 1250mm2 of logic per die. Up to 400mm wafers were expected in this timeframe, with 200W per die and 0.002 defects per square cm (or 5.65 errors per 300mm wafer).

Compare that to 2016, where we have 16/14nm lithography nodes running 300mm wafers producing 15 billion transistors on a 610mm2 die (NVIDIA P100). Cache currently goes up to 60-65MB on the largest chips, and the power consumption of these chips (the ASIC power) is around 250W as well. So while the predictions were a slow on the lithography node, various predictions about the integration of components onto a base processor were missed (memory controllers, chipsets, other IO).

What makes the most recent report different is that it is listed as the last report planned by ITRS, to be replaced by a more generalized roadmap for devices and systems, the IRDS as the utility of semiconductors has changed over the last decade. In this last report, a number of predictions and focal points have been picked up by the media, indicating a true end to Moore’s Law and how to progress beyond merely shrinking lithography nodes beyond 7nm. Part of this comes from the changing landscape, the move to IoT and the demand for big data processing and storage, but also the decrease in the profitability/performance gain of decreasing node sizes in comparison to their cost to develop is, if believed, set to put a paradigm shift in integrated circuit development. This applies to processors, to mobile, to DRAM and other industry focal points, such as data centers and communications.

I do want to quote one part of the paper verbatim here, as it ties into the fundamental principles of the future of semiconductor engineering:

“Moore’s Law is dead, long live Moore’s Law”

The question of how long will Moore’s Law last has been posed an infinite number of times since the 80s and every 5-10 years publications claiming the end of Moore’s Law have appeared from the most unthinkable and yet “reputedly qualified” sources. Despite these alarmist publications the trend predicted by Moore’s Law has continued unabated for the past 50 years by morphing from one scaling method to another, where one method ended the next one took over. This concept has completely eluded the comprehension of casual observes that have mistakenly interpreted the end of one scaling method as the end of Moore’s Law. As stated before, bipolar transistors were replaced by PMOS that were replaced by NMOS that were also replaced by CMOS. Equivalent scaling succeeded Geometrical Scaling when this could not longer operate and now 3D Power Scaling is taking off.

By 2020-25 device features will be reduces to a few nanometers and it will become practically impossible to reduce device dimensions any further. At first sight this consideration seems to prelude to the unavoidable end of the integrated circuit era but once again the creativity of scientists and engineers has devised a method ‘To snatch victory from the jaws of defeat’.

Core: Performance vs. Today Looking To The Future: 450mm Wafers in 2021, and Down to ‘2nm’
Comments Locked

158 Comments

View All Comments

  • Hrel - Thursday, July 28, 2016 - link

    10 years to double single core performance, damn. Honestly thought Sandy Bridge was a bigger improvement than that. Only 4 times faster in multi-core too.

    Glad to see my 4570S is still basically top of the line. Kinda hard to believe my 3 year old computer is still bleeding edge, but I guess that's how little room for improvement there is now that Moore's law is done.

    Guess if Windows 11 brings back normal functionality to the OS and removes "apps" entirely I'll have to upgrade to a DX12 capable card. But I honestly don't think that's gonna happen.

    I really have no idea what I'm gonna do OS wise. Like, I'm sure my computers won't hold up forever. But Windows 10 is unusable and Linux doesn't have proper support still.

    Computer industry, once a bastion of capitalism and free markets, rife with options and competition is now become truly monastic. Guess I'm just lamenting the old days, but at the same time I am truly wondering how I'll handle my computing needs in 5 years. Windows 10 is totally unacceptable.
  • Michael Bay - Thursday, July 28, 2016 - link

    I like how desperate you anti-10 shills are getting.
    More!
  • Namisecond - Thursday, July 28, 2016 - link

    I do not think that word means what you think it means...
  • TormDK - Thursday, July 28, 2016 - link

    You are right - there is not going to be a Windows 11, and Microsoft is not moving away from "apps".

    So you seems stuck between a rock in a hard place if you don't want to go on Linux or a variant, and don't want to remain in the Microsoft ecosystem.
  • mkaibear - Thursday, July 28, 2016 - link

    >Windows 10 is unusable

    Now, just because you're not capable of using it doesn't mean everyone else is incapable. There are a variety of remedial computer courses available, why not have a word with your local college?
  • AnnonymousCoward - Thursday, July 28, 2016 - link

    4570S isn't basically top of the line. It and the i5 are 65W TDP. The latest 91W i7 is easily 33% faster. Just run the benchmark in CPU-Z to see how you compare.
  • BrokenCrayons - Thursday, July 28, 2016 - link

    Linux Mint has been my primary OS since early 2013. I've been tinkering with various distros starting with Slackware in the late 1990s as an alternative to Windows. I'm not entirely sure what you mean my "doesn't have proper support" but I don't encourage people to make a full conversion to leave Windows behind just because the current user interface isn't familiar.

    There's a lot more you have to figure out when you switch from Windows to Linux than you'd need to learn if going from say Windows 7 to Windows 10 and the transition isn't easy. My suggestion is to purchase a second hand business class laptop like a Dell Latitude or HP Probook being careful to avoid AMD GPUs in doing so and try out a few different mainstream distros. Don't invest a lot of money into it and be prepared to sift through forums seeking out answers to questions you might have about how to make your daily chores work under a very different OS.

    Even now, I still keep Windows around for certain games I'm fond of but don't want to muck around with in Wine to make work. Steam's Linux-friendly list had gotten a lot longer in the past couple of years thanks to Valve pushing Linux for the Steam Box and I think by the time Windows 7 is no longer supported by Microsoft, I'll be perfectly happy leaving Windows completely behind.

    That said, 10 is a good OS at its core. The UI doesn't appeal to everyone and it most certainly is collecting and sending a lot of data about what you do back to Microsoft, but it does work well enough if your computing needs are in line with the average home user (web browsing, video streaming, gaming...those modest sorts of things). Linux can and does all those things, but differently using programs that are unfamiliar...oh and GIMP sucks compared to Photoshop. Just about every time I need to edit an image in Linux, I get this urge to succumb to the Get Windows 10 nagware and let Microsoft go full Big Brother on my computing....then I come to my senses.
  • Michael Bay - Thursday, July 28, 2016 - link

    GIMP is not the only, ahem, "windows ecosystem alternative" that is a total piece of crap on loonixes. Anything outside of the browser window sucks, which tends to happen when your code maintainers are all dotheads and/or 14 years old.
  • Arnulf - Thursday, July 28, 2016 - link

    I finally relegated my E6400-based system from its role as my primary computer and bought a new one (6700K, 950 Pro SSD, 32 GB RAM) a couple of weeks ago.

    While the new one is certainly faster at certain tasks the biggest advantage for me is significantly lower power consumption (30W idle, 90W under load versus 90W idle and 160-180W under load for the old one) and consequently less noise and less heat generation.

    Core2 has aged well for me, especially after I added a Samsung 830 to the system.
  • Demon-Xanth - Thursday, July 28, 2016 - link

    I still run an i5-750, NVMe is pretty much the only reason I want to upgrade at all.

Log in

Don't have an account? Sign up now