Base Clock Overclocking the Core i3-6100TE: Scaling

As mentioned at several points in this overall piece, overclocking using the Supermicro C7H170-M was actually really easy. There is a single option in the BIOS under ‘Extra Performance’ where you can change the base frequency from 100 MHz to 150 MHz in 5 MHz increments. This doesn’t adjust the processor voltage, and we have no load line calibrations, but that didn’t seem to matter much.

There is an option for Core Voltage Offset, although I’m not so much a fan of offsets when I saw a motherboard a couple of years ago apply a double offset, and I freaked out in case it burned out that $999 CPU. In this case though, we did not have much trouble.

Adjusting the base frequency will adjust the memory speed as well, so the two main limitations will be the processor itself (either physical limits, temperature or voltage) and the memory (also limits, temperature and voltage). This can become tricky to manage as a 35% overclock on DDR4-2133 memory can instantly push it to DDR4-2880. There is an option to reduce the memory multiplier if needed in the BIOS.

As for testing the limits of overclocking, we employed our regular methodology. Increase the frequency, run a pass of our POV-Ray benchmark followed by five minutes of OCCT, noting the voltage, temperature and power where possible. If it passes these two tests, we reboot into the BIOS and increase the frequency. If we fail the test, we would typically go back and reduce the voltage, however this wasn’t needed here. Our results are as follows:

In this case our CPU worked well all through our tests until 145 MHz, or 3.915 GHz for the processor that starts as a 2.7 GHz part. Here when we applied a strong load, it caused the system to blue screen. We tried with other benchmarks, and confirmed that the system was sort of stable, except for gaming and video editing. So as a result we moved back down the scale and found 135 MHz a reasonable compromise for the testing for the full benchmark suite.

But for testing the scaling of the overclock we did our short form benchmark suite on 100, 130, 135 and 140 MHz do see if performance in these benchmarks can accurately scale. As one of the bigger questions, we of course also did some gaming benchmark testing, using our GTX 980 at each of the points. For users interested in R9 285, R9 290 and GTX 770 data at 135 MHz, please look at our benchmark database.

Testing the Scaling – CPU Short Form

HandBrake v0.9.9 LQ Film

HandBrake v0.9.9 2x4K

Dolphin Emulation Benchmark

WinRAR 5.01, 2867 files, 1.52 GB

3D Particle Movement: Single Threaded

3D Particle Movement: MultiThreaded

POV-Ray 3.7 Beta RC4

7-zip Benchmark

In all of our short form tests, the scaling from 2.7 GHz to 3.78 GHz was near perfect, particularly in 3DPM single threaded. The more you put in, the proportional you get out.

Testing the Scaling – CPU Extra

Agisoft PhotoScan Benchmark - Total Time

Cinebench R15 - Single Threaded

Cinebench R15 - Multi-Threaded

Cinebench 11.5 - Single Threaded

Cinebench 11.5 - Multi-Threaded

x264 HD Benchmark - 1st pass - v3.03

x264 HD Benchmark - 2nd pass - v3.03

We also had some extra testing on hand. A few benchmarks showed an odd jump between 135 MHz and 140 MHz, such as Agisoft and Cinebench 10 single thread. Dolphin saw some odd regression at 140 MHz, but the general trend still stood.

Testing the Scaling – GTX 980 Gaming

Alien Isolation on ASUS GTX 980 Strix 4GB ($560)

Total War: Attila on ASUS GTX 980 Strix 4GB ($560)

Grand Theft Auto V on ASUS GTX 980 Strix 4GB ($560)

Grand Theft Auto V on ASUS GTX 980 Strix 4GB ($560) [Under 60 FPS]

GRID: Autosport on ASUS GTX 980 Strix 4GB ($560)

GRID: Autosport on ASUS GTX 980 Strix 4GB ($560) [Minimum FPS]

Shadow of Mordor on ASUS GTX 980 Strix 4GB ($560)

Shadow of Mordor on ASUS GTX 980 Strix 4GB ($560) [Minimum FPS]

In our gaming tests, every title showed proportional gains such that moving from 130 to 135 MHz did the same increase as moving from 135 to 140 MHz, although in some cases it was really, really minor. The best way to look at it is to plot a graph of frame rate against CPU frequency, and find where the frequency = 0 cuts the line and note the gradient. What matters here is two points. If the intercept (frequency = 0) value is high, then it offers a good performance no matter what. If the gradient is high, then you get a better response per adjustment in frequency.

Benchmark (1080p Ultra) Intercept Gradient
Alien Isolation, Average FPS 86.59 FPS 24.1 FPS per GHz
Total War: Attila, Average FPS 10.86 FPS 6.1 FPS per GHz
Grand Theft Auto, Average FPS 33.11 FPS 8.6 FPS per GHz
Grand Theft Auto, % Frames >16.6ms   -20.4% per GHz
GRID, Average FPS 67.71 FPS 24.9 FPS per GHz
GRID, Minimum FPS 28.00 FPS 26.0 FPS per GHz
Shadow of Mordor 4K, Average FPS 39.31 FPS 0.3 FPS per GHz
Shadow of Mordor 4K, Minimum FPS 16.18 FPS 3.2 FPS per GHz

From these results, essentially everything except Mordor seems to get really nice gains (proportionally) from increasing the frequency.

As an exercise in stupid numbers, here’s a calculation. Using the intercept and gradient, and assuming a perpetual linear relationship, calculate the frequency needed for 60, 120 or 240 FPS average. The results are:

Benchmark (1080p Ultra) Frequency Needed
for 60 FPS
Frequency Needed
for 120 FPS
Frequency Needed 
for 240 FPS
Alien Isolation, Average FPS Always 1.38 GHz 6.37 GHz
Total War: Attila, Average FPS 8.06 GHz Stupid Even more stupid
Grand Theft Auto, Average FPS 3.13 GHz 10.10 GHz Stupid
Grand Theft Auto,
% Frames >16.6ms
For all frames below 16.6ms: 5.98 GHz
GRID, Average FPS Always 2.10 GHz 6.92 GHz
GRID, Minimum FPS 1.23 GHz 3.54 GHz 8.15 GHz
Shadow of Mordor 4K
Average FPS
69.67 GHz Stupid Even more stupid
Shadow of Mordor 4K
Minimum FPS
13.69 GHz Stupid Even more stupid

Because of the titles that scale, I’m inclined to believe some of these numbers, such as Alien Isolation and GRID, but Mordor is just amusing as the minimum scales faster than the average in our small test. Give me a ring if we ever hit 70 GHz.

A Word on Power Consumption

It turns out that power consumption numbers becomes a byline in this test. At stock frequencies and at +35% overclock, the power consumption of this 35W part moved from 32W to 38W, which is pretty much what was to be expected.

Core i3-6100TE Gaming Performance: High End GTX 980/R9 290X Base Clock Overclocking the Core i3-6100TE: The i5 Competition
Comments Locked

62 Comments

View All Comments

  • ViperV990 - Thursday, March 17, 2016 - link

    The i5-6400 @ $180 seems to be a much better part to OC.
  • nightbringer57 - Thursday, March 17, 2016 - link

    Heh, when some of the younger ones today speak about overclocking, I like to remember them of how much more financially interesting overclocking used to be. It's like everyone forget how overclocking worked a few years ago. I still remember my cheap student gaming PC with a Pentium E2180 that went from 2GHz to 3GHz with a standard tower rad and only a slight voltage boost. Then you could have almost all of the performance of the 300€ CPUs (except a good bit of the cache) for 60€ or so. Multiplier overclocking is easier, yes, and it's good to reach insane peak frequencies - but this market of the "buy low, push high" overclocking has faded out (courtesy, of course, of the segmentation by core numbers as well)
  • BrokenCrayons - Thursday, March 17, 2016 - link

    Oh yeah, well I overclocked when there were still turbo buttons on the fronts of AT cases! So nyah nyah!

    Sarcasm aside though, drawing a line in the sand to mark when overclocking was "good" or "worthwhile" and when it stopped being fun or have any sort of point would result in an awful lot of people drawing an awful lot of lines all over the place. For instance, the last processor I bothered with overclocking was a 2GHz Pentium 4 derived Celeron. Pushing the FSB from 100 to 150MHz on an Intel boxed cooler with a little bit of extra voltage netted a 3GHz chip...which rapidly became highly unstable over the course of a few months. After that and numerous PIIs, PIIIs, the infamous Celeron 300A and whatnot, I got bored with it and my priorities shifted. I would have overclocked my VIC-20 and Trash 80 if I'd known more about computers because I couldn't resist tinkering. I think if one were to ask other people, they'd find different points in time and different processor technologies so it's probably unfair to people who are simply by nature of the date of their birth, unable to discuss overclocking in terms you're more comfortable with.
  • nightbringer57 - Thursday, March 17, 2016 - link

    Yes, but still. There had been a more or less constant trend of tinkering around with low-end CPUs to get quasi-high-end performance out of them for quite a long time. I quote my old E2180, but over the "modern" history of computers (that is, in the current context, IBM PC and their heir), there had always been such shenanigans available to the tinkerers. If you go further in time, the trend fades as the modern concept of CPU "range" fades out and it came more down to boosting your X - generation CPU to still have a bit more oomph after most of the software environment of you given platform had moved to a new generation.
    And not only Intel processors, but AMD processors as well, with the pencil unlockable Durons and whatnot.

    As this article states, this kind of overclocking has more or less died in recent years, partly due to technical issues (as systems get more and more complex and integrated, it becomes riskier), partly due to the current state of the market, partly due to marketing practices.

    It's not about discussing overclocking in terms I personally am comfortable with or whatnot. It's just about being realistic. I hope that AMD can come back with Zen and bring a bit more freshness into the low-end overclocking market.
  • Spoelie - Friday, March 18, 2016 - link

    Still had a lot of fun in the period between 2000-2010 with the Athlons, always buying the lowest end SKU of the performance line, and ocing between 20-40% to reach the same performance of the highest end SKU in the line.

    E.g.
    On an nForce2 board IIRC
    * Athlon XP 1800+ (Socket A Thoroughbred 256KB cache) 1533mhz OC to ~2ghz
    * Athlon XP 2500+ (Socket A Barton 512KB cache) FSB166 to FSB200 = OC to "3200+"

    Had a Athlon 64 2800+ on a Socket 754 for a very short time, don't remember what I did to it.

    Then a "DFI LanParty UT NF4 Ultra-D" (Socket 939 w/ nForce4 & 2*512MB Winbond BH-5 PC3200 @ 250mhz 2-2-2), cream of the crop at the time.
    * Athlon 64 3000+ (Venice) OC 1800 to 2250 (250bus)
    * Opteron 165 (Toledo) OC 1800 to 2475 (274bus)

    I loved those days
  • Murloc - Sunday, March 20, 2016 - link

    yeah I remember a 45nm core 2 duo I had, with the boxed stock cooler I was able to lower the voltage quite a bit and daily OC it at 4GHz at the same time.
    It was a lucky piece compared to others.
  • cobrax5 - Monday, March 21, 2016 - link

    I'm thinking about replacing my 45nm i7-930 @ 3.8ghz with a hex-core, 32nm Xeon and OC that to > 3.6ghz. You can get them for like under $200, and I'll keep my (admittedly aging) X58 platform.
  • benedict - Thursday, March 17, 2016 - link

    Single-threaded benchmarks show this processor to be much better than what it'd be in real life. I don't know if there are people who only run a single program at a time on their PCs. Having more cores is much more valuable than most benchmarks will show.
  • TheinsanegamerN - Thursday, March 17, 2016 - link

    I can run 7 programs at once, but if one is very demanding and is single threaded, then single threaded performance is still quite relevant. Multiple programs/=/not needing single threaded performance. Thinking that single threaded performance is not important got AMD the FX series, and subsequently a large portion of their users jumping to intel.
  • calculagator - Thursday, March 17, 2016 - link

    Everyone is different, but single threaded benchmarks give a much better picture of performance for "normal" users than multithreaded in my experience. Even if they have lots of programs running, most users are only using one program at a time. All of those open documents and web tabs use very little CPU power while they just sit there. I have about 100 active processes right now, but my CPU is idling at about 3% usage.
    Even a basic dual-core CPU can handle most users' multitasking. The most common exceptions are gaming and video editing, but most users are not doing those things most of the time. Consider how people use laptops so often: their CPUs have such high single-threaded/burst performance that they hardly notice how much less powerful they are than much more powerful desktop CPUs.

Log in

Don't have an account? Sign up now