GPU Performance

CPU performance is one side of an SoC, while GPU performance is the other side. With two years of GPU development between the Nexus 5 and the 5X we're hopefully looking at a substantial uplift in GPU performance. Qualcomm's official figures peg Adreno 418 as 20% faster than Adreno 330 in graphics workloads. To characterize the Nexus 5X's performance during graphics workloads that are similar to those a 3D game would provide I've run it through our standard GPU-focused benchmarks. The first is 3DMark, followed by BaseMark X and GFXBench 3.0.

3DMark 1.2 Unlimited - Graphics

3DMark 1.2 Unlimited - Physics

3DMark 1.2 Unlimited - Overall

The Nexus 5X ends up actually coming in below the Nexus 5 in 3DMark's overall score. This is the result of the much lower score in the physics sub test. However, it's worth noting that the 3DMark physics test has heavy data dependencies and all of our tested devices with bigger out of order cores end up doing poorly. While this is a possible scenario in a real-world program, I wouldn't make too many conclusions from the Nexus 5X's performance here. In the graphics test there's actually a surprising gap between the 5X and the LG G4 which uses the same SoC, and I've been unable to get a score anywhere near it no matter how many times I re-run the test. At least in 3DMark it looks like the LG G4 has a bit of a lead over the Nexus 5X.

BaseMark X 1.1 - Dunes (High Quality, Onscreen)

BaseMark X 1.1 - Hangar (High Quality, Onscreen)

BaseMark X 1.1 - Dunes (High Quality, Offscreen)

BaseMark X 1.1 - Hangar (High Quality, Offscreen)

BaseMark X 1.1 - Overall (High Quality)

BaseMark X's results are more in line with what I expected to see from the 5X's GPU. The on-screen results are far ahead of the LG G4, which isn't surprising at all when you consider that the G4 is driving a 2560x1440 panel while the 5X is pushing 1920x1080. Both off-screen results are close enough that they could be ascribed to margin of error, and ultimately BaseMark X shows that there's not really any gap between the absolute performance of the G4 and the 5X, but the 5X will definitely be faster for anything running at native resolution.

GFXBench 3.0 T-Rex HD (Onscreen)

GFXBench 3.0 Manhattan (Onscreen)

GFXBench 3.0 T-Rex HD (Offscreen)

GFXBench 3.0 Manhattan (Offscreen)

The results in GFXBench echo those of BaseMark X. The 5X beats the G4 in both off-screen cases, but only by a small margin. With the 5X being slightly faster than the G4 in both GFXBench and BaseMark X we may be looking at some small driver improvements here, but since all the gaps are so small it may just be coincidence that the 5X is the faster of the two devices in both tests.

Ultimately, both Adreno 418 and 430 are pretty good GPUs, and with the Nexus 5X being priced at $379 I think it offers more than adequate GPU performance for its price. What's interesting is that even though we didn't see Snapdragon 805 show up in many devices, it was in the Nexus 6, and its Adreno 420 GPU is definitely a bit faster than the Adreno 418 in the 5X. The Nexus 6 was also priced much higher than the 5X, and so with the 5X you're definitely getting a lot more GPU performance for your money than you got with the Nexus 6. The performance uplift is definitely greater than Qualcomm's stated 20%, and it's always nice to see something beat expectations.

NAND Performance

When I originally reviewed the Nexus 6 I decided to publish the review without any storage benchmarks, because in my testing I noticed that the results I was getting simply did not add up. Futher investigation revealed that it was the result of the Nexus 6's forced Full disk encryption (FDE), and the encryption and decryption of data being done without the use of high speed, power efficient fixed-function hardware. Later on in the Nexus 9 review Josh noted that there was a significant uplift in NAND performance compared to the Nexus 6, and it was clear that the AES/SHA instructions that are part of the ARMv8 instruction set were helping to reduce the performance impact of FDE.

Since Snapdragon 808 supports the ARMv8 ISA this presents a good opportunity to revisit this topic. The Nexus 5X shares several things with the LG G4, and one of them is its NAND, which is an eMMC 5.0 solution provided by Toshiba with the model number 032G74. While there's not much public information on this storage solution, one would expect that NAND storage speed results from the Nexus 5X closely match those of the LG G4, as if that isn't the case then it's clear that FDE causes a noticeable loss of performance despite ARMv8's cryptographic instructions.

Internal NAND - Random Read

Internal NAND - Random Write

Random read and write speeds both take a hit when compared to the LG G4. While the gaps don't look enormous, the performance with small transaction sizes on mobile devices is hardly great to begin with, and so even these small gaps can matter greatly. In this case both random read and write speeds are both about 30% lower than the G4, which is significant.

Internal NAND - Sequential Read

Internal NAND - Sequential Write

Sequential write speeds on the 5X end up being about equal to the G4, but the gap in sequential read speeds is enormous. Altogether, it's clear that there's still a significant reduction in NAND performance caused by the use of FDE when only using ARMv8's cryptographic instructions to encrypt and decrypt data to be written. This contrasts with comments made by Google engineer David Burke during a Reddit AMA discussing the FDE situation on the Nexus 5X in response to a comment that was referencing the Nexus 6's poor storage performance. What's interesting is that ARM has stated before that the ARMv8 cryptographic instructions are not a substitute for fixed-function hardware, and so it looks like there's a disagreement between ARM and Google on whether or not this is an adequate solution for encryption.

Reduced storage performance is not the only problem with this solution. Waking up the AP to do encryption or decryption every time the disk has to be read from or written to incurs a huge power penalty compared to simply using a hardware AES block and DMA which happens to be what Apple has been doing for about six years now. There are power savings here just waiting for Google to grab them, but they've decided not to do so for a second year now. Google certainly has an interest in getting Android phones to use FDE out of the box in order to combat negative perceptions about Android's security, but I don't think it's acceptable to have such a policy without the necessary hardware to make sure it doesn't affect the device's performance to any significant degree.

The Nexus 5X is certainly in a much better situation than the Nexus 6 was, but Google's FDE policy means you still get significantly reduced storage performance across the board compared to a device with the same NAND. This has various ramifications, ranging from data transfer speeds, to app install times, to performance when apps are updating in the background, to the ability to rapidly take photos and record high bitrate video. I really wish Google would either not ship with forced FDE and allow it to be disabled, or implement the necessary fixed-function AES hardware to avoid the significant performance hit.

System Performance Battery Life, Charging, WiFi
POST A COMMENT

197 Comments

View All Comments

  • zeeBomb - Monday, November 9, 2015 - link

    Well well well! What do we have here? A 5x review without the 6P? I'll take it. Reply
  • Der2 - Monday, November 9, 2015 - link

    Okay, read the whole review. Great work as always Brandon, and I just wanna put my thoughts out:

    That sustained performance though! Two minutes... Eek! Although that hits me right to my kokoro I think it isnt much of a big problem as someone like me who browses waaay more than gaming.

    NAND performance. Oh man. One day AES hardware will be noticed. Or maybe a case of f2fs storage might help...hmm.

    Its a blessing that Google is using great camera hardware for the first time. HDR+ All day every day kinda sucks as you basically have to rely on ISP and heavy processing, but as long as I get good photos out of it, I'm okay with that.

    All in all, this is a great device for it's price point. Priced competitively and has good improvements over the original 5. It really comes down to how google can maintain such good outcomings of a phone for a lot cheaper than other OEMS...

    And I will always respect them for doing so.
    Reply
  • zeeBomb - Monday, November 9, 2015 - link

    Wow, great stuff you mentioned there man (totally something I would say!) As google has some losses in this device, the GOOD does outweigh the BAD in this type of scenario, which I applaud google for. F2FS may be still young, but the innovation to multiply your read write speed is something I can wonder a lot of phones will benefit from.

    The 808 may be a bummer for some, but a wiser choice to implement without sacrifing so much performance, as it really comes down to Qualcomm to learn from their mistakes and hopefully not make a crucial mistake like this again.

    BTW the camera...woot! Can walk around and snap pics like no tomorrow! (P.S: The 5X doesn't have EIS, but only the 6P does).
    Reply
  • Billie Boyd - Friday, November 27, 2015 - link

    Between 5x and N6. I recommend going for N6 instead. Its highly rated by the consumers based on satisfaction (see http://www.consumerrunner.com/top-10-best-headphon... for instance...) Reply
  • Kookas - Friday, December 18, 2015 - link

    It's also huge, however. It's nice to keep devices that you have to carry about all day compact. Reply
  • coolhardware - Monday, November 9, 2015 - link

    Enjoyed this one! Definitely more likely to look at picking up a 5X after reading the Anandtech review.

    Interesting to see where the Nexus 5X slots in with other Nexus devices, specifically when it comes to pixel density (PPI)
    http://pixensity.com/search/?search=nexus
    Reply
  • Kumar Anand - Tuesday, November 10, 2015 - link

    I am running Wi-Fi throughput test on Nexus 5X using iperf and I am getting much higher numbers than anandtech. Here is information regarding my test bed -

    a) iperf version : 2.0.5
    b) iperf command used:
    iperf -s -w 512k -i1 -u
    iperf -c <ip> -w 512k -i1 -t 300 -u -b 300M -P3
    c) AP: Netgear R8000, VHT80, CH:157, Open Security.
    d) Environment: OTA (over the air) in a clean environment (i.e. no interference from other clients)
    e) 2 runs each for UDP DL/UL, each iperf run is for 5min (300s).
    f ) 3 iperf parallel streams (iperf -P3 option)

    RESULTS:
    UDP Uplink (UL): 642 Mbps, 702 Mbps
    UDP Downlink (DL)): 678 Mbps ,708 Mbps

    anandtech - Could you please clarify regarding your tests? I am curious to understand why your numbers are not matching my peak numbers.

    1) What is SW build loaded on your Nexus 5X?
    2) What is the AP configuration and make and model?
    3) What is the tool/command being used?
    Reply
  • jay401 - Tuesday, November 10, 2015 - link

    Does this phone have WiFi Calling? Reply
  • DLimmer - Thursday, November 12, 2015 - link

    Yes and no. A quick summary of Google-Fi in this review would help answer this question.

    Yes: Google-Fi is Google's solution to phone plans/service. It replaces your current carrier at a pre-paid rate ($20 for unlimited U.S. text and voice, $10 per 1GB of data... only pay for the data you use). Google has sourced cellular service from 2 companies and many Wi-Fi hot spots, and has placed hardware in the 6, 6P and 5X to enable seamless usage and switching.

    No: Wi-Fi calling is only available on the Google-Fi network.

    As stated, only 3 phones currently possess the hardware to use Google-Fi.
    Reply
  • Der2 - Monday, November 9, 2015 - link

    In my opinion, this is Googles finest phone yet: where the fan has schoice to decide! Reply

Log in

Don't have an account? Sign up now