Benchmark Configuration and Methodology

For our testing we installed 64-bit Ubuntu 15.04 Linux (Kernel version 3.19.0) so that we were able to use GCC 4.9.2, which has better support for the POWER8. We tried to keep the colors inside our benchmark graphs consistent: dark blue is IBM, light blue is the latest Intel Xeon generation (Haswell, E5 v3), and gray was reserved for older Intel systems.

Meanwhile on a quick aside, we should point out that IBM's servers also support PowerVM and KVM virtualization, however we decided not to make use of it to keep the complexity of the tests under control. As we explained in the introduction, porting and tuning the usual benchmarks was quite a challenge, and virtualization makes benchmarking a lot more complex. Testing virtualized workloads was thus beyond the scope of this article.

All tests have been done with the help of Kirth and Wannes of the Sizing Servers Lab.

IBM S822L (2U Chassis)

CPU Two IBM POWER8 3.425 GHz 10 cores
RAM 128GB (8x16GB) IBM CDIMMs
Internal Disks 2x 300GB 15K RPM SAS Disks (boot)
1x Intel DC P3700 400 GB (Data and benchmarks)
Motherboard No idea
BIOS version OPAL v3
PSU Dual Emerson 1400W

Intel's Xeon E5 Server – "Wildcat Pass" (2U Chassis)

CPU Two Intel Xeon processor E5-2699 v3 (2.3GHz, 18c, 45MB L3, 145W)
Two Intel Xeon processor E5-2695 v3 (2.3 GHz, 14c, 35MB L3, 120W)
Two Intel Xeon processor E5-2667 v3 (3.2 GHz, 8c, 20MB L3, 135W)
Two Intel Xeon processor E5-2650L v3 (1.8GHz, 12c, 30MB L3, 65W)
RAM 128GB (8x16GB) Samsung M393A2G40DB0 (RDIMM)
Internal Disks 2x Intel MLC SSD710 200GB (boot)
1x Intel DC P3700 400 GB (Data and benchmarks)
Motherboard Intel S2600WTT
BIOS version version 1.01
PSU Delta Electronics 750W DPS-750XB A (80+ Platinum)

All C-states are enabled in both the BIOS.

Other Notes

Both servers are fed by a standard European 230V (16 Amps max.) powerline. The room temperature is monitored and kept at 23°C by our Airwell CRACs.

The L4-cache and Memory Subsystem "Per Core" Integer Performance: 7-Zip
POST A COMMENT

146 Comments

View All Comments

  • Der2 - Friday, November 6, 2015 - link

    Life's good when you got power. Reply
  • BlueBlazer - Friday, November 6, 2015 - link

    Aye, the power bills will skyrocket. Reply
  • Brutalizer - Friday, November 13, 2015 - link

    It is confusing that sometimes you are benchmarking cores, and sometimes cpus. The question here is "which is the fastest cpu, x86 or POWER8" - and then you should bench cpu vs cpu. Not core vs core. If a core is faster than another core says nothing, you also need to know how many cores there are. Maybe one cpu has 2 cores, and the other has 1.000 cores. So when you tell which core is fastest, you give incomplete information so I still have to check up how many cores and then I can conclude which cpu is fastest. Or can I? There are scaling issues, just because one benchmark runs well on one core, does not mean it runs equally well when run on 18 cores. This means I can not extrapolate from one core to the entire cpu. So I still am not sure which cpu is fastest as you give me information about core performance. Next time, if you want to talk about which cpu is faster, please benchmark the entire cpu. Not core, as you are not talking about which core is faster.

    Here are 20+ world records by SPARC M7 cpu. It is typically 2-3x faster than POWER8 and Intel Xeon, all the way up to >10x faster. For instance, M7 achieves 87% higher saps than E5-2699v3.
    https://blogs.oracle.com/BestPerf/

    The big difference between POWER and SPARC vs x86, is scalability and RAS. When I say scalability, I talk about scale-up business Enterprise servers with as many as 16- or even 32-sockets, running business software such as SAP or big databases, that require one large single server. SGI UV2000 that scales to 10.000s of cores can only run scale-out HPC number crunching workloads, in effect, it is a cluster. There are no customers that have ever run SGI UV2000 using enterprise business workloads, such as SAP. There are no SAP benchmarks nor database benchmarks on SGI UV2000, because they can only be used as clusters. The UV2000 are exclusively used for number crunching HPC workloads, according to SGI. If you dont agree, I invite you to post SAP benchmarks with SGI UV2000. You wont find any. The thing is, you can not use a small cluster with 10.000 cores and replace a big 16- or 32-socket Unix server running SAP. Scale-out clusters can not run SAP, only scale-up servers can. There does not exist any scale-out clustered SAP benchmarks. All the highest SAP benchmarks are done by single large scale-up servers having 16- or 32-sockets. There are no 1.000-socket clustered servers on the SAP benchmark list.

    x86 is low end, and have for decades stopped at maximum 8-sockets (when we talk about scale-up business servers), and just recently we see 16- and 32- sockets scale-up business x86 servers on the market (HP Kraken, and SGI UV300H) but they are brand new, so performance is quite bad. It takes a couple of generations until SGI and HP have learned and refined so they can ramp up performance for scale-up servers. Also, Windows and Linux has only scaled to 8-sockets and not above, so they need a major rewrite to be able to handle 16-sockets and a few TB of RAM. AIX and Solaris has scaled to 32-sockets and above for decades, were recently rewritten to handle 10s of TB of RAM. There is no way Windows and Linux can handle that much RAM efficiently as they have only scaled to 8-sockets until now. Unix servers scale way beyond 8-sockets, and perform very well doing so. x86 does not.

    The other big difference apart from scalability is RAS. For instance, for SPARC and POWER you can hot swap everything, motherboards, cpu, RAM, etc. Just like Mainframes. x86 can not. Some SPARC cpus can replay instructions if something went wrong. x86 can not.

    For x86 you typically use scale-out clusters: many cheap 1-2 socket small x86 servers in a huge cluster just like Google or Facebook. When they crash, you just swap them out for another cheap server. For Unix you typically use them as a single scale-up server with 16- or 32-sockets or even 64-sockets (Fujitsu M10-4S) running business software such as SAP, they have the RAS so they do not crash.
    Reply
  • zeeBomb - Friday, November 6, 2015 - link

    New author? Niiiice! Reply
  • Ryan Smith - Friday, November 6, 2015 - link

    Ouch! Poor Johan.=(

    Johan is in fact the longest-serving AT editor. He's been here almost 11 years, just a bit longer than I have.
    Reply
  • hans_ober - Friday, November 6, 2015 - link

    @Johan you need to post this stuff more often, people are forgetting you :) Reply
  • JohanAnandtech - Friday, November 6, 2015 - link

    well he started with "niiiiice". Could have been much worse. Hi zeeBomb, I am Johan, 43 years old and already 17 years active as a hardware editor. ;-) Reply
  • JanSolo242 - Friday, November 6, 2015 - link

    Reading Johan reminds me of the days of AcesHardware.com. Reply
  • joegee - Friday, November 6, 2015 - link

    The good old days! I remember so many of the great discussions/arguments we had. We had an Intel guy, an AMD guy, and Charlie Demerjian. Johan was there. Mike Magee would stop in. So would Chris Tom, and Kyle Bennett. It was an awesome collection of people, and the discussions were FULL of real, technical points. I always feel grateful when I think back to Ace's. It was quite a place. Reply
  • JohanAnandtech - Saturday, November 7, 2015 - link

    And many more: Paul Demone, Paul Hsieh (K7-architect), Gabriele svelto ... Great to see that people remember. :-) Reply

Log in

Don't have an account? Sign up now