Haswell Low Power CPU Conclusion

There is a clear demand for lower powered everything, as long as the performance is still there. We saw this with the MSI B85M ECO motherboard we reviewed recently, whereby as long as it makes financial sense as well it becomes a win-win.

Intel ultimately keeps its binning and testing process secret, but it is the binning process that allows them to keep high yields by a partitioning off defective cores or CPUs that do not conform to the best voltage/frequency curves. Some CPUs will fall into multiple bins, allowing Intel to sell the unit as a model that needs a boost in stock due to consumer demand. This is why some processors can perform as well as others in terms of their voltage/frequency response, but the only way to guarantee a certain level of performance is to buy the exact processor you need.

Today we tested three processors: the i3-4130T, the i5-4570S and the i7-4790S. These tackle three competitive price points on Newegg at $135, $215 and $315. This is the main reason we requested these processors in rather than others, as many S or T models end up as OEM only. The OEM only models sometimes appear for sale depending on the retailer and their own stock levels, or the region, but are not available everywhere. This is a shame, as some real gems (like the i7-4765T) are on Intel's road map.

The S processors command nothing extra over the base cost, in comparison to the premium of the K models. In terms of performance, in single threaded benchmarks (and therefore responsiveness) these CPUs performed the same as their counterparts, and our i7-S CPU was right on the money all the way through. Particularly in our gaming benchmarks, no performance was lost against the bigger models. In mutlithreaded benchmarks, there was a slight performance decrease. This means a Google Octane result down from 33512 with the i7-4790 to 31127 with the i7-4790S, a loss of 7% in exchange for the reduction in TDP, but in our gaming benchmarks the only real deficit afforded by the S/T processors was that in a few circumstances, minimum frames were lower, such as Bioshock Infinite moving from 28.0 FPS on the i3-4360 to 24.5 FPS on the i3-4130T.

With the T processors, the cut is more severe, especially for the i7 models. For our i3 T processor, we are reducing down from a 54W base component to a 35W, similar to the i7 S reductions. As a result, the benchmark numbers, while lower, are comparable to those i3 models with a potential sticker saving of 19W.

Is the power reduction worth the increase in cost? Ultimately the main use for lower power processors is for systems where heat and noise are critical junctures in the design. By using a lower power processor, the heatsink can also be smaller. This means certain office designs and machines destined for communal areas of the home are the main target points, as well as potential servers that end up locked in a room somewhere. Intel's range of lower powered Haswell processors, according to their road maps, is quite substantial, although one downfall for end users is that some of the exciting parts are OEM only.

Gaming Benchmarks on GTX 770
Comments Locked

76 Comments

View All Comments

  • nathanddrews - Thursday, December 11, 2014 - link

    Hmph.
  • Khenglish - Thursday, December 11, 2014 - link

    So you think these CPUs really are better binned? An undervolted K series cannot always pull off the voltages at the same clocks as a S series?

    If so do you think these better binned chips finally at least match Ivy Bridge in terms of performance per watt?
  • casteve - Thursday, December 11, 2014 - link

    No, they aren't better binned. Another site looked at the voltage vs. freq curve and found that the std TDP, S, and T parts all followed the same curve. That i7 S part looks like an oddball.
  • Samus - Thursday, December 11, 2014 - link

    I work with HP Elitedesk 800's all the time with I5-4570S CPU's. They're incredibly small and quiet, much more so than the identically sized USFF dc7900 Core 2 Duo's they replaced.
  • name99 - Thursday, December 11, 2014 - link

    We constantly hear about how aggressively Intel bins parts, how each model is a special snowflake that's exactly optimized for its role, etc etc. I've yet to see any evidence that this is actually true (as opposed to "Intel engages in very aggressive market segmentation --- by product name".

    The primary reason I'm not convinced is that no-one else bins nearly as aggressively. Apple, never a company to miss the opportunity for a dollar, doesn't engage in some obvious binning (eg ship the iPhone6+ at 100MHz faster; or even give you a 100MHz speed boost in each model as you go from 16GB to 32GB to 64GB storage). Qualcomm offers a fairly limited palette of Snapdragon speeds. Samsung, the master if there ever was one, at slicing and dicing phone models, doesn't offer the same phone at speeds of 1, 1.5, and 2GHz; etc etc.

    We have to assume that
    - everyone else's processes are crazy uniform compared to Intel OR
    - Intel is MUCH smarter than anyone in how they are able to bin OR
    - binning (at the micro segmentation Intel offers) just is not a real thing
    and the third option seems the most plausible to me.
  • Samus - Thursday, December 11, 2014 - link

    Almost nobody pays attention to GHz numbers in mobile devices. Nobody really cares. And the scaling with ARM really means nothing. Apple consistently has among the highest performance ARM CPU's yet they're lower clocked and lower core count than everyone else. Binning ARM CPU's would require two things in order to be profitable: real-world benefits to a slightly higher clock speed, and marketing the higher clock speed as worth the premium. Currently there are neither. I'd guess 99/100 people don't even know the clock speed of the phone they own, because that's how irrelevant it is. For many applications (such as gaming, where performance is not consistent across the majority of devices) the GPU matters more than the CPU because of how heavily optimized these apps are for the GPU.

    The PC landscape is totally different.. You still have PC's sold that have 1/10th the performance of a Core i7.

    Now, where your idea could be interesting is if they sell an "eco" chip that runs at a lower voltage due to binning. People MIGHT be willing to pay extra for a phone with +20% battery life.
  • Kjella - Friday, December 12, 2014 - link

    Or perhaps the simplest and most obvious explanation - Apple feels they're more in the console game than the PC game. Offer one consistent level of performance across all iPhones of the same generation and that's the spec all developers need to relate to.
  • Hrel - Friday, December 12, 2014 - link

    - everyone else's processes are crazy uniform compared to Intel OR
    - Intel is MUCH smarter than anyone in how they are able to bin OR

    Those are both true.
  • wumpus - Friday, December 12, 2014 - link

    So Intel chips can't be overclocked and produce more watts than different lettered processors under identical conditions? That isn't what was tested and would be a rather shocking development.

    Chips take a considerable time to fab. Markets change fast and somehow Intel manages to produce what the market needs in the face on negligible competition? Yea, I really believe that they are really binning and not simply segementing to what marketing wants.
  • BSMonitor - Friday, December 12, 2014 - link

    Use case. A PC's use case is an entirely different world than mobile phones. Your anti-Apple bias aside, what applications would users engage in on their smart phone where CPU performance could be noticeably segregated by clock speed. In this space. The only indication of CPU performance is the "snapiness" of the response from whatever app you are in.

    In a PC sense, I could launch an application or task that takes minutes, hours, etc.. 200-300 MHz would be noticeable over the course of an hour of video compression.

    Apples and oranges.

Log in

Don't have an account? Sign up now