Gaming Benchmarks

Sleeping Dogs

Sleeping Dogs is a benchmarking wet dream – a highly complex benchmark that can bring the toughest setup and high resolutions down into single figures. Having an extreme SSAO setting can do that, but at the right settings Sleeping Dogs is highly playable and enjoyable. We run the basic benchmark program laid out in the Adrenaline benchmark tool, and the Xtreme (1920x1080, Maximum) performance setting, noting down the average frame rates and the minimum frame rates.

Sleeping Dogs: 1080p Max, 1x GTX 770

Sleeping Dogs, 1080p Max
  NVIDIA AMD
Average Frame Rates

Minimum Frame Rates

Company of Heroes 2

Company of Heroes 2 also can bring a top end GPU to its knees, even at very basic benchmark settings. To get an average 30 FPS using a normal GPU is a challenge, let alone a minimum frame rate of 30 FPS. For this benchmark I use modified versions of Ryan’s batch files at 1920x1080 on High. COH2 is a little odd in that it does not scale with more GPUs with the drivers we use.

Company Of Heroes 2: 1080p Max, 1x GTX 770

Company of Heroes 2, 1080p Max
  NVIDIA AMD
Average Frame Rates

Minimum Frame Rates

Battlefield 4

The EA/DICE series that has taken countless hours of my life away is back for another iteration, using the Frostbite 3 engine. AMD is also piling its resources into BF4 with the new Mantle API for developers, designed to cut the time required for the CPU to dispatch commands to the graphical sub-system. For our test we use the in-game benchmarking tools and record the frame time for the first ~70 seconds of the Tashgar single player mission, which is an on-rails generation of and rendering of objects and textures. We test at 1920x1080 at Ultra settings.

Battlefield 4: 1080p Max, 1x GTX 770

Battlefield 4, 1080p Max
  NVIDIA AMD
Average Frame Rates

99th Percentile Frame Rates

Gaming Benchmarks: F1 2013, Bioshock Infinite, Tomb Raider Testing Performance of Ultra M.2 x4, the Effect on Gaming and OS Installation
Comments Locked

43 Comments

View All Comments

  • 457R4LDR34DKN07 - Saturday, May 24, 2014 - link

    The Gen2 M.2 x4 PCIe looks very impressive. Its too bad that Asrock did not include this in their mITX offering.
  • 457R4LDR34DKN07 - Saturday, May 24, 2014 - link

    I mean Gen3
  • smoohta - Saturday, May 24, 2014 - link

    Regarding the Dolphin benchmark- you wrote:
    "Results are given in minutes, where the Wii itself scores 17.53; meaning that anything above this is faster than an actual Wii for processing Wii code, albeit emulated."

    This should read "... meaning that anything below this is faster than..." - right?
  • Ian Cutress - Saturday, May 24, 2014 - link

    Bad choice of words - anything 'above on the graph' would be faster based on the orientation of results. I've updated it to remove the ambiguity. Thanks for pointing it out :)
    Ian
  • r3loaded - Saturday, May 24, 2014 - link

    The overarching conclusion from this review - Intel needs to put far more PCIe 3..0 lanes on their CPUs and chipsets if we want motherboards where connectors don't play musical chairs with each other for bandwidth. Also, Samsung needs to make the XP941 a retail product right now!
  • Tunnah - Saturday, May 24, 2014 - link

    I think the reasoning behind an either/or situation with M.2/SATAe is sound - the consumer most likely will not require 2 high end SSDs, and will go with one that is either M.2 or SATAe, the rest can be served via normal SATA ports.

    Also I think SATAe, while a great idea, will lose out to the convenience and capability of M.2; SATAe would have been great 2 years ago but now M.2 is here it is absolutely perfect for an OS drive, cutting down on not just size but cabling.
  • SirKnobsworth - Sunday, May 25, 2014 - link

    Agreed about SATAe, especially since (a) SSDs don't really need that much circuit board area and (b) A RAID array of two SATA SSDs offers at least as much theoretical bandwidth as a SATAe while taking up the same amount of ports on your board.
  • Babar Javied - Sunday, May 25, 2014 - link

    Exactly my thought. So why have SATAe???? Its great that it uses PCI but it doesn't really offer anything that we couldn't already do.

    As you've said, "A RAID array of two SATA SSDs offers at least as much theoretical bandwidth as a SATAe while taking up the same amount of ports on your board".

    There seems to be a lot of stupid decisions being made regarding ports. DDR4 is another example of a useless upgrade.
  • Death666Angel - Tuesday, May 27, 2014 - link

    "A RAID array of two SATA SSDs offers at least as much theoretical bandwidth" But your are losing random performance when going RAID and increase the chance of a disk failure. Why would you even compare them?
  • Galatian - Saturday, May 24, 2014 - link

    Ian,

    Can you explain to me why no mainboard manufacturer is using 4 lanes from the chipsets PCIe 2.0? I mean that would be enough for the Samsung SSD and still has room left. I mean what do I gain from all those SATA and USB ports? Who is actually using all of them?

    Right now I have to choose between either a slow M.2 slot because they only allocate 2 lanes or I can go with ASRock which feels like overkill and takes away CPU PCIe lanes.

Log in

Don't have an account? Sign up now