Java Server Performance

The SPECjbb 2013 benchmark is based on a "usage model based on a world-wide supermarket company with an IT infrastructure that handles a mix of point-of-sale requests, online purchases and data-mining operations". It uses the latest Java 7 features and makes use of XML, compressed communication and messaging with security.

Benchmark architecture diagram

We tested with four groups of transaction injectors and backends. We applied a relatively basic tuning to mimic real world use.

"-server -Xmx4G -Xms4G -Xmn1G -XX:+AggressiveOpts -XX:+UseLargePages-server -Xmx4G -Xms4G -Xmn1G -XX:+AggressiveOpts -XX:+UseLargePages"

With these settings, the benchmark takes about 43GB of RAM. The first metric is basically maximum throughput.

SPECJBB2013-Multi max-jOPS

The newest Xeon E5 2697 v2 delivers 33% better performance. The Opteron 6380 needs a 50% clock advantage to stay ahead of the 10-core Xeon E5. This illustrates how large the gap is between the Opterons and even the midrange Xeons. A 10-core Xeon E5-2660 V2 at 2.2GHz costs a bit more than the Opteron 6380 but will deliver a significantely better performance per watt, considering the very low 95W TDP.

The Critical-jOPS metric, is a throughput metric under response time constraint.

SPECJBB2013-Multi Critical-jOPS

We have to admit we have our doubts. The Critical-jOPS measurements do not seem to be very repeateable and it is not completely clear how it is calculated. However, it confirms earlier measurements of our own that the Xeons are better at responding quickly at a given throughput. Again, the new Xeon 2697 v2 performs about 30% better than the Xeon E5 2690.

 

SPECJBB®2013 is a registered trademark of the Standard Performance Evaluation Corporation (SPEC).
SAP S&D Rendering Performance
Comments Locked

70 Comments

View All Comments

  • Kevin G - Tuesday, September 17, 2013 - link

    Odd that Intel went the 3 die route with Ivy Bridge-EP. It was no surprise that the lowend would be a variant of the 6 core Ivy Bridge-E found in the Core i7-4900 series. Apple leaked that the line up would scale to 12 cores. The surprise is a native 10 core part and the differences between it and the 12 core design.

    Judging from the diagrams, Intel altered its internal ring bus for connecting cores. One ring goes orbits around all three columns of cores while another connects two columns. Thus the cores in the middle column have better latency for coherency as they have fewer stops on the ring bus to reach any core. The outer columns should have similar latency than the native 10 core chip for coherency: fewer cores to stop but longer traces on the die between columns.

    Not disclosed is how the 12 core chip divides cache. Previously each core would have a 2.5 MB of L3 cache that was more local than the rest of the L3 cache. The middle column may have access to L3 cache on both sides.

    The usage of dual memory controllers on the 12 core die is interesting. I wonder what measurable differences it produces. I'd fathom tests with a mix of reads/writes (ie databases) would show the greatest benefit as a concurrent read and write may occur. In a single socket configuration, enabling NUMA may produce a benefit. (Actually, how many single socket 2011 boards have this option?)
  • madmilk - Tuesday, September 17, 2013 - link

    It looks like each ring is connected to two columns. One ring goes around all three, but does not connect to the center column.
  • JlHADJOE - Tuesday, September 17, 2013 - link

    I'm guessing the 12-core might see action in the 8P segment, which is well overdue for an update.
  • psyq321 - Tuesday, September 17, 2013 - link

    There will be 15-core E7 8xxx v2 CPUs based on the same IvyTown architecture.

    As Intel is not showing the die-shot of a 12 core Ivy EP, I wonder if the 15-core EX and 12-core EP are using the same 3x5 die.
  • Kevin G - Tuesday, September 17, 2013 - link

    The memory controller interfaces are different between the Ivy Bridge-EP and Ivy Bridge-EX. The EP uses DDR3 in all of its forms (vanilla, ECC, buffered ECC, LR ECC) where as the EX version is going to use a serial interface similar in concept to FB-DIMMs. There will be two types of memory buffers for the EX line, one for DDR3 and later another that will use DDR4 memory. No changes need to be made to the new EX socket to support both types of memory.
  • Brutalizer - Tuesday, September 17, 2013 - link

    I would have expected this newest Intel 12-core cpu to perform better. For instance, in Java SPECjbb2013 benchmarks, it gets 35,500 and 4,500. However, the Oracle SPARC T5 gets 75.700 and 23.300 which totally demolishes the x86 cpu. Have not the x86 cpus improved that much in comparison to SPARC? The x86 still lags behind?
    https://blogs.oracle.com/BestPerf/entry/20130326_s...
  • JohanAnandtech - Tuesday, September 17, 2013 - link

    Be careful when you compare inflated, for marketing purposes results with independent "limited optimization" results ;-)
  • Phil_Oracle - Friday, February 21, 2014 - link

    What do you mean by inflated for marketing purposes? SPECjbb2013 is clearly a real world, recent benchmark that’s full audited by all vendors on the SPEC committee. If you make such claims, surely you have some evidence?
  • extide - Tuesday, September 17, 2013 - link

    Dont forget those T5's run at TDP's in the 200-300W range... If you clocked up one of these babies to those power levels I am sure it would be >= to the T5.
  • Kevin G - Tuesday, September 17, 2013 - link

    TDP's are indeed higher on the SPARC side but not as radically as you indicate. Generally they do not consume more than 200W. (Unfortunately Oracle doesn't give a flat power consumption figure for just the CPU, this is just an estimate based upon their total system power calculator. For reference, the POWER7 is 200W and the POWER7+ is 180W.)

Log in

Don't have an account? Sign up now