Gigabyte Z87X-UD3H In The Box

Box contents can be a very important part of the package, especially in terms of additional cables, or perhaps USB 3.0 brackets.  Most modern cases come with a USB 3.0 header, meaning motherboards with one header will most likely not get an additional bracket, but those with two headers could get one in the box.  This of course adds cost to the product as a whole (such as WiFi/USB 3.0 5.25” boxes), so a manufacturer has to decide whether to include the $5-$10 worth of kit, or just bundle in $1 of bulk-purchase SATA cables in order to drive the motherboard to a lower price point.  The motherboard is the key thing, right?  Personally I have seen some outstanding bundles ($140 motherboard with that USB 3.0 bracket, or something as simple as plastic standoffs for overclockers), and some not so much.

The big competition from the UD3H on this front is the fact that in the last generation, the Z77X-UD5H was $180, and that was stripped in terms of box contents to meet an awesome price point.

From the Z87X-UD3H, we get:

User Guide
Driver Disk
Rear IO Shield
Four SATA Cables
Flexi-SLI Bridge

Gigabyte Z87X-UD3H Overclocking

Experience with Gigabyte Z87X-UD3H

As my first overclocking experience on Haswell, I think it went rather well.  I have heard some horror stories to do with Haswell (processors falling over at 4.2 GHz), but luckily enough the CPU I had is actually a bit of a corker.

In terms of the Gigabyte motherboard itself, the automatic options in the EasyTune software worked well, and those in the BIOS also worked, apart from the Extreme (4.7 GHz) setting.  My only point of contention is that when a user applies any of these settings, it does not update the text values in the BIOS relating to the voltages or CPU speeds.  Personally I like to see what the system is doing with an automatic setting, but on speaking to Gigabyte they prefer it the other way to allow users to adjust voltages by offset if needed on the automatic settings.

The settings I was able to figure out helped in deciding our manual overclocking procedure.  This meant a starting point of 4.0 GHz (40x multiplier) and 1.000 volts, testing for stability and then either upping voltage when unstable or multiplier when stable.  Alongside this we also adjusted the Integrated Voltage Regulator (FIVR) voltage input to 1.65 V and Load Line Calibration to High.  With these in place, we hit 4.6 GHz stable at 1.250 V in the BIOS, and 4.7 GHz was just about stable at a rather high 1.425 volts.

Methodology:

Our standard overclocking methodology is as follows.  We select the automatic overclock options and test for stability with PovRay and OCCT to simulate high-end workloads.  These stability tests aim to catch any immediate causes for memory or CPU errors.

For manual overclocks, based on the information gathered from previous testing, starts off at a nominal voltage and CPU multiplier, and the multiplier is increased until the stability tests are failed.  The CPU voltage is increased gradually until the stability tests are passed, and the process repeated until the motherboard reduces the multiplier automatically (due to safety protocol) or the CPU temperature reaches a stupidly high level (100ºC+).  Our test bed is not in a case, which should push overclocks higher with fresher (cooler) air. 

Automatic Overclock:

For automatic overclock options, we can either decide whether to apply options in the OS via the EasyTune software or through the BIOS:

Starting with the OS, we tested EasyTune Light, Medium and Extreme:

- Light: Sets 41x100, 1.150 V CPU and 1.770 volts VRIN. Gives 1.087 volts at load, a PovRay score of 1677.97 and passes OCCT with 66C max temperature.  Also sets memory to XMP minus one strap.

- Medium: Sets 43x100, 1.287 V CPU and 1.692 volts VRIN.  Gives 1.280 volts at load, a PovRay score of 1739.42, and passes OCCT with 83C max temperature.  Also sets memory to XMP minus one strap.

- Extreme: Sets 45x100, 1.287 V CPU and 1.692 volts VRIN.  Gives 1.284 volts at load, a PovRay score of 1824.35, and passes OCCT with 79C max temperature.  Also sets memory to XMP minus one strap.

Through the BIOS, we tested Performance Boost levels from Medium to Extreme:

- Medium: 43x100, 1.752 volts VRIN.  Gives 1.285 volts at load, PovRay of 1757.37 and OCCT passed at 82C.
- High: 44x100, 1.704 volts VRIN.  Gives 1.280 volts at load, PovRay of 1785.38 and OCCT passed at 85C.  Sets DRAM to 1600 10-11-11.
- Turbo: 45x100, 1.692 volts VRIN.  Gives 1.284 volts at load, PovRay of 1839.53 and OCCT passed at 87C.  Sets DRAM to 1866 10-13-13.
- Ultra: 46x100, 1.692 volts VRIN.  Gives 1.284 volts at load, PovRay of 1857.82 and OCCT passed at 88C.  Sets DRAM to 1866 10-13-13.
- Extreme: 47x100, 1.680 volts VRIN.  Gives 1.344 volts at load, PovRay of 1898.45 but a BSOD with OCCT.  Sets DRAM to 2133 10-14-14.

Manual Overclock:

With the information from the automatic overclock, we achieved the following manual overclock results:

Gigabyte Z87X-UD3H Software MSI Z87-GD65 Gaming Overview, Visual Inspection, Board Features
POST A COMMENT

58 Comments

View All Comments

  • ShieTar - Thursday, June 27, 2013 - link

    Is there a special reason not to test the POST times and DPC latency of the Gigabyte Board? Its power consumption is quiet impressive, and whatever design measures have been used to achieve it do not seem to negatively affect the overall performance. So it would be interesting to complete the picture with the two measurements which are missing. Reply
  • IanCutress - Thursday, June 27, 2013 - link

    DPC Latency on the Gigabyte during testing was jumping around a fair bit, hitting 800+, though that is more likely due to the early BIOS revision. I need to run the POST test (as the results are strangely missing from my database) as well as the DPC test on a newer BIOS. Since I started testing almost every manufacturer has released newer BIOSes (as is always the way coming up to a launch) and I really have to lay the hammer down as testing a whole new BIOS takes a good 30 hours or so start to finish, so when I'm locked in that's it. That in a way does give an unfair advantage to the board I test last, but there's not a lot else I can do. I am still getting emails of BIOS updates for these boards as of yesterday.

    Ian
    Reply
  • tribbles - Thursday, June 27, 2013 - link

    Am I wrong in thinking that Gigabyte hasn't been doing well in the DPC Latency Test since Z77? If so, that's kind of surprising, since Gigabyte seems to be a "go-to" brand for digital audio workstation builders. Reply
  • IanCutress - Wednesday, July 10, 2013 - link

    I retested the UD3H on the F5 (public) BIOS, and it scored 164. The two next boards I have in for review got 160 and 157, which points fingers to the DPC on Haswell being 150+ regardless of motherboard. This might be a fundamental issue. Reply
  • Timur Born - Saturday, July 27, 2013 - link

    Run Prime95 (or turn off CPU power features) while measuring DPC latencies to see how much CPU power saving features affect DPCs. Reply
  • jhonabundance - Thursday, August 28, 2014 - link

    great share http://asus.com Reply
  • jhonabundance - Thursday, August 28, 2014 - link

    this is the best share http://asus.com Reply
  • Rick83 - Thursday, June 27, 2013 - link

    Maybe a bad choice to use two different ways of graphing the Rightmark results.
    Being consistent with regard to cutting off the irrelevant bit of the graph makes it a much easier read.
    Now it appears at first glance as though the Gigabyte board is much better in THD+N, simply because the differences were so minuscule in the dynamic range bit.

    On another note: Shouldn't it be more interesting to use a standardized input instead of the input of the board? In the current protocol a good output could be handicapped by a bad input, and conversely. For most users the output is much more important than the input, so it might be better to test it independently? I would recommend using a USB soundcard as an easy means of doing this test on the same machine, without changing the setup protocol too much.

    And finally - I seem to remember Rightmark results for earlier reviews - it would be interesting to have those (or maybe a reference soundcard?) as comparison in the same graph. After all, for DPC you maintain a large cross-platform table as well.

    Nice thorough initial review, those nitpicks withstanding.
    Reply
  • IanCutress - Thursday, June 27, 2013 - link

    Unfortunately I can't adjust the engine to represent from 0 for negative values, I don't have access to the low level options. I forwarded it on as an issue.

    I'd love to use a standardized input with RMAA. I guess it would be good to get a sound card with an input that supercedes the output of the motherboard and put it through that way, and hopefully there won't be a driver conflict along the line. I'll see what I can do to get in the hardware for that, although many soundcards are designed more for output and the input dynamic range/distortion might be the limiting factor as is the case on motherboards. Something like the Xonar Essence STX has a 118 dBA input with -113 dBA THD+N which might be a good starting point.

    Our RMAA testing for Z87 has changed a little from Z77 to make it more of an efficiency test rather than an out-the-box test as audio is such a varied playing field. RMAA is very sensitive to certain windows settings and volumes for example such that with the right combination it was very easy to show A>B or B>A depending on how the OS felt it should be set up. The new testing regimen for RMAA should iron out those issues but the results are not exactly comparable to Z77 for that reason. There are so many wrong ways to set up RMAA it can be difficult (and a learning experience) to get it right.

    Ian
    Reply
  • popej - Thursday, June 27, 2013 - link

    Nice to see you are planning steps in right direction. Using reference card for measurements is a proper solution. Be aware, that separate card add complications to the test, for example you will have to take care about ground loops and signal level matching. Professional card with balanced input could help a lot. Reply

Log in

Don't have an account? Sign up now