WiFi Now 2.4 and 5 GHz with 40 MHz Channels

Section by Brian Klug

WiFi connectivity on mobile devices is something that has steadily moved forward, along with continual iterative inclusion of the latest Bluetooth standards for pairing with accessories. For a while now, we’ve seen more and more smartphones include 5 GHz connectivity alongside 2.4 GHz. Apple famously started the 5 GHz mobile device push with the iPad 1, but has taken its time bringing dual band WiFi to the iPhone while numerous other smartphones have included it. Thankfully, the wait is over and the iPhone 5 now includes single stream 2.4 and 5 GHz WiFi support. On 2.4 GHz, Apple continues to only let you use up to 20 MHz channels to improve Bluetooth coexistence, but has this time enabled short guard interval rates for a PHY of up to 72 Mbps. On 5 GHz side the iPhone 5 can support up to 40 MHz channels for a PHY of 150 Mbps. We will touch on real-world performance testing in a minute.

150 Mbps rate showing for 802.11n on 5 GHz

As we originally predicted, this connectivity comes courtesy of Broadcom’s BCM4334 802.11a/b/g/n, Bluetooth 4.0 + HS, FM radio combo chip which is built on the 40nm RF CMOS process. There are different ways you can buy a BCM4334, and for smartphones one of the most common is a ceramic package with the RF front end, all the filters, all the power amplifiers, and so forth in one ready-to-use package, which is what we see with the iPhone 5.

Apple iPhone - WiFi Trends
  Release Year WiFi + BT Support WiFi Silicon Antenna Gain
iPhone 2007 802.11 b/g, BT 2.0+EDR Marvell W8686, CSR BlueCore -
iPhone 3G 2008 802.11 b/g, BT 2.0+EDR Marvell W8686, CSR BlueCore -
iPhone 3GS 2009 802.11 b/g, BT 2.1+EDR Broadcom BCM4325 -
iPhone 4 2010 802.11 b/g/n (2.4GHz), BT 2.1+EDR Broadcom BCM4329 -1.89 dBi
iPhone 4S 2011 802.11 b/g/n (2.4GHz), BT 4.0+EDR Broadcom BCM4330 -1.5 dBi
iPhone 5 2012 802.11 b/g/n (2.4+5 GHz), BT 4.0+LE Broadcom BCM4334 2.4 GHz: -1.4 dBi
5 GHz: 0.14 to -2.85 dBi

I’ve written before about the BCM4334 versus the 65nm BCM4330 which came before it and was in the iPhone 4S and numerous other devices. For a while now Apple has used Broadcom combos exclusively for iPhones and iPads, so BCM4334 isn’t a big surprise at all. The new module again offers a significant reduction in power consumption over the previous generation, all while making dual-band compatibility a baseline feature. We’ve already seen BCM4334 in a host of other smartphones as well. A lot of people had asked about BCM4335 and 802.11ac support, but it’s simply too soon for that part to have made it into this iPhone.

Adding 5 GHz WiFi support might sound like a minor improvement to most people, however its inclusion dramatically improves the reliability of WiFi in challenging environments where 2.4 GHz is either completely overloaded or full of other interferers. There have been many times at conferences and crowded urban locales where I’ve seen 2.4 GHz congested to the point of being unusable, and that will only continue getting worse. The far greater number of non-overlapping channels on 5 GHz, and propagation characteristics of that band, mean on average less interference at least for the time being.

As expected, in the WiFi Settings pane there is no mention of what channel the SSID you’re going to connect to is on. This follows Apple’s minimalist configuration modus operandi that has always existed for iOS — there’s no band preference 3 option toggle to be found in iOS like I’m used to seeing in Android for selecting Automatic, 2.4 GHz Only, or 5 GHz Only. Apple’s ideal WiFi use case is, unsurprisingly, exactly what the Airport base stations guide you into during standard setup — a single SSID for both 2.4 and 5 GHz networks. This way the client WiFi device uses its own handover thresholds to decide which one is best. If you’re running a dual band access point and intend to use an iPhone 5 with it, this is the ideal band plan Apple is not-so-subtly nudging you towards for the best user experience.

Nailing those thresholds is a hugely important implementational detail, one that I’ve seen many smartphones do improperly. Set incorrectly, the client WiFi device will endlessly chatter between 2.4 and 5 GHz at some places in the coverage profile, resulting in an extremely frustrating experience and lack of connectivity. Thankfully Apple has implemented this threshold very well based on lots of prior experience with the 2.4 and 5 GHz WiFi in iPad 1, 2, and 3. There’s enough hysteresis that the iPhone 5 isn’t constantly chattering back and forth, and in my testing the handover point as you move from near the AP on 5 GHz to spots far away where 2.4 GHz gets you better propagation is virtually impossible to detect.

iPhone 5's WiFi+BT antenna, encircled in red

Before we finally get to throughput testing it’s worth noting the evolution in both that combo solution and antenna design plus gain that the iPhone has gone through in the last three generations. The iPhone 4 used the leftmost external notch antenna for WiFi, Bluetooth, and GPS. Famously, this wasn’t a very ideal design due to capacitive loading for both cellular and WiFi detuning the whole thing. Thus, the Verizon iPhone 4 and 4S this changed to an internal planar inverted F antenna (PIFA) which is extremely common in the smartphone space. The iPhone 5 continues this PIFA and internal choice but redesigns it once more. Apple is required to report gain and output power as part of their FCC filing, and we can see that 2.4 GHz gain is slightly improved on the iPhone 5, while gain on the 5 GHz band varies wildly across the various bands (which have different regulatory constrains).

In my not especially scientific testing watching the numeric signal strength reported in the place of the WiFi bar indicator, I saw the iPhone 5 routinely report the same number in the same place alongside the 4S when on 2.4 GHz. This isn’t surprising considering how close gains are between the two. Both also finally dropped my WiFi network at almost the same spot walking away from my dwelling.

When it comes to actual throughput I turned to testing WiFi using an iOS port of iPerf and measuring throughput from my server to the iPhone. I tested the iPhone 4, 4S, and 5 in this manner at 5 locations in my dwelling, 6 if you count to and from my office where 5 GHz is strongest.

WiFi Throughput Testing at Different Locations

Starting in my Office where I have my Airport Extreme (5th generation) setup, we show throughput at 95.7 Mbps on the new iPhone 5. This is on a 40 MHz channel on 5 GHz, whereas the other iPhones are obviously on 2.4 GHz 20 MHz channels and both show almost the same throughput. The second location is my smaller hallway slash connecting room, where the iPhone 5 already hands over from 5 GHz to 2.4 GHz, from here on out results are on 2.4 GHz. As we move away (living room couch, bedroom, and in the kitchen on my lightbox) throughput decreases but the iPhone 5 still improves on the previous generation thanks to improvements made each generation to the entire stack. I immediately ran a test upon returning to office to illustrate the difference in adaptation time for each iPhone generation as they change MCS (Modulation Coding Scheme) for 802.11n. The iPhone 5 takes quite a while (on the order of minutes) to hand back up to 5 GHz upon returning to a region with strong 5 GHz signal.

WiFi Performance - iPerf

If we look at how the iPhone 5 compares in the best case testing graph I perform for all smartphones that cross my desk (using iperf), we can see that the iPhone 5 does pretty favorably. It still can’t unseat the MSM8960 based devices which use the onboard WLAN baseband in conjunction with WCN3660 (EVO 4G LTE and One X AT&T), but does beat other BCM4334 devices like the two Galaxy S IIIs.

The story here is almost entirely one of what interface is used. Obviously MSM8960 has an advantage with being entirely on-chip. Meanwhile iPhone 5 uses BCM4334 over HSIC which is analogous USB 2.0, and the other BCM4334 devices use SDIO from what I’ve learned. This is primarily why we see such a strong clustering of results around some values.

Overall the iPhone 5 offers an even bigger improvement over its predecessor than the 4S did when it comes to the WiFi and Bluetooth connectivity side. Inclusion of 5 GHz WiFi support has essentially become the new baseline for this current crop of smartphones, and I’m glad to see the iPhone include it.

GNSS: GPS with GLONASS Speakerphone Quality and Noise Suppression
Comments Locked


View All Comments

  • dado023 - Tuesday, October 16, 2012 - link

    These days for me is battery life and then screen usability, so my next buy will be 720p, with iPhone5 setting the bar, i hope other android makers will follow.
  • Krysto - Tuesday, October 16, 2012 - link

    Are you implying iPhone 5 is setting the bar for 720p displays? Because first of all, it doesn't have an 1280x720 resolution, but a 1136x640 one, and second, Android devices have been sporting 720p displays since a year ago.
  • hapkiman - Tuesday, October 16, 2012 - link

    I have an iPhone 5 and my wife has a Samsung Galaxy S III.

    Her Galaxy S III has a Super AMOLED 1280x720 display.

    And yes my iPhone 5 "only" has a 1136 x 640 display.

    But guess what - I'm holding both phones side by side right now looking at the exact same game and there is no perceivable difference. I looked at it, my son looked at it, and my wife looked at it. On about five or six different games, videos, apps, and a few photos. The difference is academic. You cant tell a difference unless you have a bionic eye.

    They both look freakin' fantastic.
  • reuthermonkey1 - Tuesday, October 16, 2012 - link

    I think you're missing Krysto's point. Of course looking at a 4" 1136 x 640 and a 4.8" 1280x720 display side by side will look equivalent to the eye. But his response wasn't to whether they're similar, but to the minimum requirement dado023 has set for their next purchase to be 720p.

    The iPhone5's screen looks fantastic, but it's not 720p, so it's not exactly setting the bar for 720p.
  • Samus - Wednesday, October 17, 2012 - link

    I'm no Apple fan, but in their defense, it is completely unneccessary to have 720p resolution on a 4" screen.

    The ppi of the screen is already 20% higher than is discernible by the human eye. Having the resolution any higher would be a waste of processing power.
  • afkrotch - Wednesday, October 17, 2012 - link

    More screen real estate. Higher resolution, more crap you can throw on it. Course ih a 4" or 4.8" display, how many icons can you really place on the screen. I have a 4" screen and I wished I could shrink my icons though. Would love to get more icons on there.

    I can't do large phones anymore. I had a 5" Dell Streak...no thanks. Too big.
  • rarson - Wednesday, October 17, 2012 - link

    "The ppi of the screen is already 20% higher than is discernible by the human eye."

    Uh, no it's not. The resolution of a human retina is higher than 326 ppi.
  • Silma - Thursday, October 18, 2012 - link

    This doesn't mean anything. It depends on how far away the reading material is from the eye.

    720p may not be needed for such a small screen but it is better than "not exactly" 720p in that the phone doesn't have to rescale 720p material.

    In the same way retina marketing for macbook is pure BS as for the screen size and eye distance from the screen such a high resolution is not needed and will only burn batteries faster and make laptops warmer for next to no visual benefit. In addition 1080p materials will have to be rescaled.
  • rarson - Thursday, October 18, 2012 - link

    Right, so if you have good vision, like I do, then at a foot away, you can see those pixels.
  • MobiusStrip - Friday, October 19, 2012 - link


Log in

Don't have an account? Sign up now