Power Consumption Results

As we’ve been alluding to throughout this article, power consumption is on the forefront of processor technology now, and into the future. So, starting with this article, we will be including Power Consumption results in future IT articles. It should be no surprise that Opteron dominated these tests, but it probably will be to those who concentrated on performance, and power was of no concern. The Bensley system used approximately 1.5x the amount of power in the idle load test over the Opteron system. Given that a Dempsey (130 W) processor uses approximately 1.4x the amount of power as an Opteron (95 W), the results are inline with the specifications for the two processors.

As the load on the system grew, the Bensley system used 1.7x and 1.8x more power (respective to the 50% and 100% load levels). It’s obvious that the Opteron system is more efficient at higher load levels than the Bensley, thus using less power. The Opteron’s on-die memory controller is one of the factors that would allow the Opteron to be more efficient at higher load levels.

Power Utilization (idle)

Power Utilization (40-60% utilization)

Power Utilization (100% utilization)

Database Benchmark Results How does power consumption affect the bottom line?
POST A COMMENT

67 Comments

View All Comments

  • gjmck - Monday, December 19, 2005 - link

    I'm curious that the numbers dont reflect the true difference between equivalently configured Intel vs. Opteron systems.

    The Dempsey processor TDP max is 130W and the Opteron is 95W. That difference is only 35W. The memory controller needed by Dempsey should only consume 60 - 80W. Using 80W that gives the maximum total difference between two eqivalently configured systems as 80 + 35 = 115W.

    Yet in the max processor utilization tests the difference was 214 Watts. So where is the extra 99 Watts being used? FBD? If so then when Opteron uses similar memory technology the delta will not be as great.

    Gregg McKnight
    Reply
  • Furen - Thursday, December 22, 2005 - link

    Intel's TDPs reflect "typical" power draw, while AMD's reflects the "worst-case scenario" power consumption, so they're not directly comparable. I very much doubt the memory controller uses even close to 80W, I'd say something like 20-30W for the whole northbridge is reasonable. FB does use more power, but that shouldn't be more than 5-10W per dimm. The rest is just the CPU being insanely power-inefficient. Reply
  • dannybin1742 - Friday, December 16, 2005 - link

    to keep anthing at a constant temperature, the heat going into the system must equal the heat being taken away. so if one system uses 200W of power, first you have the cost of the 200W, then you have the cost to remove the 200W of heat given off by the use of the system. on top of this air, conditioners are 20-25% efficient at best (if i remember correctly), so the amount of power used to remove the heat generated would take 3-4X more energy to remove. so in essence you are looking at at LEAST 2X amount of money calculated in the article. (i took a year of thermodynamics at school here, when i was an undergrad) in reality, you are probably looking at 4-6X to run and remove the heat from the data center. they should have looked at the opteron 2.2ghz HE (low voltage) i'd be interested to see what power numbers those put up.

    also, was winxp 2003 server 64 bit? or were all the tests run in 32 bit? i just skimmed over the article. how about linux?
    Reply
  • coldpower27 - Friday, December 16, 2005 - link


    Opteron 270 HE is the highest of the lower wattage 2 Way Opterons and it runs at 2.0GHZ.

    Reply
  • Viditor - Friday, December 16, 2005 - link

    quote:

    Opteron 270 HE is the highest of the lower wattage 2 Way Opterons and it runs at 2.0GHZ

    You mean 2 way dual core...
    The 250 HE is single core at 2.4 GHz...
    Reply
  • coldpower27 - Friday, December 16, 2005 - link

    Yes, I assume 2 Dual Core vs 2 Dual Core. Reply
  • haris - Friday, December 16, 2005 - link

    One question that kept nagging me was "How many "threads" were required to get the systems to each load level?" How much of a difference would it make to performance/watt if you have to take into account that processor 1 is also handling x% more/less threads then processor 2? Reply
  • Jason Clark - Friday, December 16, 2005 - link

    That will teach me for just taking a $1,000 measurement devices reported figures :) It actually figures out the cost, which obviously was wrong. I've updated the numbers, they should be correct.


    Again, sorry :)
    Reply
  • coldpower27 - Friday, December 16, 2005 - link

    Thanks alot.:) Reply
  • Biffa - Friday, December 16, 2005 - link

    With over a 1Ghz defecit (yes I know) in processor speed, and with only 1MB of cache per core rather than 2MB, I think we can safely say that Intel is still clutching at straws at this level of the game.

    Good PR on their part (always admired them for that) however its a crying shame that after all this time this is the best they can do.
    Reply

Log in

Don't have an account? Sign up now