System Performance

Not all motherboards are created equal. On the face of it, they should all perform the same and differ only in the functionality they provide - however, this is not the case. The obvious pointers are power consumption, POST time and latency. This can come down to the manufacturing process and prowess, so these are tested.

For Z490 we are running using Windows 10 64-bit with the 1909 update.

Power Consumption

Power consumption was tested on the system while in a single MSI GTX 1080 Gaming configuration with a wall meter connected to the power supply. This power supply has ~75% efficiency > 50W, and 90%+ efficiency at 250W, suitable for both idle and multi-GPU loading. This method of power reading allows us to compare the power management of the UEFI and the board to supply components with power under load, and includes typical PSU losses due to efficiency. These are the real-world values that consumers may expect from a typical system (minus the monitor) using this motherboard.

While this method for power measurement may not be ideal, and you feel these numbers are not representative due to the high wattage power supply being used (we use the same PSU to remain consistent over a series of reviews, and the fact that some boards on our testbed get tested with three or four high powered GPUs), the important point to take away is the relationship between the numbers. These boards are all under the same conditions, and thus the differences between them should be easy to spot.

Power: Long Idle (w/ GTX 1080)Power: OS Idle (w/ GTX 1080)Power: Prime95 Blend (w/ GTX 1080)

Long Idle and OS Idle power seem a lot higher than other Z490 boards. This will be down primarily to the PLX chip, but also the 10 gigabit Ethernet on board.

Non-UEFI POST Time

Different motherboards have different POST sequences before an operating system is initialized. A lot of this is dependent on the board itself, and POST boot time is determined by the controllers on board (and the sequence of how those extras are organized). As part of our testing, we look at the POST Boot Time using a stopwatch. This is the time from pressing the ON button on the computer to when Windows starts loading. (We discount Windows loading as it is highly variable given Windows specific features.)

Non UEFI POST Time

Despite not being a server board for Xeons, or having an IPMI, the Supermicro system has a similar POST time to those server boards. Part of this will be down to the PLX chip, but there is also consideration on CPU detection and training - a system can POST faster if it auto-assumes that the CPU and DRAM are the same as the last time it was turned on, whereas other motherboards will do a proper check every time.

DPC Latency

Deferred Procedure Call latency is a way in which Windows handles interrupt servicing. In order to wait for a processor to acknowledge the request, the system will queue all interrupt requests by priority. Critical interrupts will be handled as soon as possible, whereas lesser priority requests such as audio will be further down the line. If the audio device requires data, it will have to wait until the request is processed before the buffer is filled.

If the device drivers of higher priority components in a system are poorly implemented, this can cause delays in request scheduling and process time. This can lead to an empty audio buffer and characteristic audible pauses, pops and clicks. The DPC latency checker measures how much time is taken processing DPCs from driver invocation. The lower the value will result in better audio transfer at smaller buffer sizes. Results are measured in microseconds.

Deferred Procedure Call Latency

Normally anything under 250 microseconds is good, however it is clear that the other vendors are doing something that Supermicro is not.

Board Features, Test Bed and Setup CPU Performance, Short Form
Comments Locked

24 Comments

View All Comments

  • :nudge> - Monday, December 21, 2020 - link

    Too little too lake
  • orsoleads - Monday, December 28, 2020 - link

    Great info. This will be great for my new set up. Will be adding to my list to order next week. Thanks a bunch. Regards - http://www.google.com
  • Duncan Macdonald - Monday, December 21, 2020 - link

    Or with Threadripper you can have 64 PCIe 4.0 lanes direct from the CPU - no switch required,

    The total bandwidth on the Supermicro is only that of 16 PCIe 3.0 lanes - the switch does not magically add bandwidth. The bandwidth on Threadripper 3rd gen (3970x etc) is eight times the bandwidth of the Intel CPU (a PCIe 4.0 lane has twice the bandwidth of a PCIe 3.0 lane).

    Even the latest Ryzen chips have more bandwidth due to having PCIe 4.0 lanes instead of PCIe 3.0 lanes.

    The board is probably on special offer to clear out this deadweight item.

    The only good reason for buying it is to replace a broken motherboard.
  • Jorgp2 - Monday, December 21, 2020 - link

    lol the cheapest TR and motherboard combo is like $2000
  • Operandi - Monday, December 21, 2020 - link

    Yeah, this particular board is potintless given the platform. Aside from that Supermicro should really lean into what they do best and thats build solid boards aimed at professionals. Sure target the DIY enthusiast but drop the gamer slogans, and marketing, "play harder" ughhh.... just stop.
  • lmcd - Monday, December 21, 2020 - link

    The point is specifically the platform. Wouldn't this be one of the only boards capable of 2-card SLI with 3090s (not that such a thing is performant) without a NUMA-required CPU?
  • JimmyZeng - Tuesday, December 22, 2020 - link

    Then you'll notice 2 slot 3090s are hard to find.
  • edzieba - Tuesday, December 22, 2020 - link

    The x16 slots are 4 slots apart.
  • Jorgp2 - Tuesday, December 22, 2020 - link

    Any GPU is single slot if you stick a water block on it.
  • CheapSushi - Wednesday, December 23, 2020 - link

    No, shut up. It's great that SuperMicro is making these and it is an option. Why don't YOU focus on other products.

Log in

Don't have an account? Sign up now