Professional Performance: Linux

Built around several freely available benchmarks for Linux, Linux-Bench is a project spearheaded by Patrick at ServeTheHome to streamline about a dozen of these tests in a single neat package run via a set of three commands using an Ubuntu 11.04 LiveCD. These tests include fluid dynamics used by NASA, ray-tracing, OpenSSL, molecular modeling, and a scalable data structure server for web deployments. We run Linux-Bench and have chosen to report a select few of the tests that rely on CPU and DRAM speed.

Due to our limited testing time and other issues, only the i7-5775C was processed in our Linux tests. These should be updated for Part 2.

C-Ray: link

C-Ray is a simple ray-tracing program that focuses almost exclusively on processor performance rather than DRAM access. The test in Linux-Bench renders a heavy complex scene offering a large scalable scenario.

Linux-Bench c-ray 1.1 (Hard)

NAMD, Scalable Molecular Dynamics: link

Developed by the Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign, NAMD is a set of parallel molecular dynamics codes for extreme parallelization up to and beyond 200,000 cores. The reference paper detailing NAMD has over 4000 citations, and our testing runs a small simulation where the calculation steps per unit time is the output vector.

Linux-Bench NAMD Molecular Dynamics

NPB, Fluid Dynamics: link

Aside from LINPACK, there are many other ways to benchmark supercomputers in terms of how effective they are for various types of mathematical processes. The NAS Parallel Benchmarks (NPB) are a set of small programs originally designed for NASA to test their supercomputers in terms of fluid dynamics simulations, useful for airflow reactions and design.

Linux-Bench NPB Fluid Dynamics

Redis: link

Many of the online applications rely on key-value caches and data structure servers to operate. Redis is an open-source, scalable web technology with a b developer base, but also relies heavily on memory bandwidth as well as CPU performance.

Linux-Bench Redis Memory-Key Store, 1x

Linux-Bench Redis Memory-Key Store, 10x

Linux-Bench Redis Memory-Key Store, 100x

Professional Performance: Windows Gaming Benchmarks: Integrated and R7 240 DDR3
Comments Locked

196 Comments

View All Comments

  • iTon - Saturday, June 6, 2015 - link

    i've think AMD products best when used Mantle API. it can boost up to 30% than DirectX API. Otherwise 10% parts of AMD APU had TrueAudio DSP Processor. so it is not 100% CPU and GPU
  • Oxford Guy - Saturday, June 6, 2015 - link

    Six APUs and not one FX chip in the charts.

    LAME
  • Oxford Guy - Saturday, June 6, 2015 - link

    Heaven forbid someone might see that you can get a better Cinebench multithread score from a $100 8320E than from a pricey Intel...
  • Oxford Guy - Saturday, June 6, 2015 - link

    8320E with 1600 8-8-8-24 RAM at 1585 due to FSB, Cinebench 15 multithread

    one core per module, 4.28 GHz, 399
    one core per module, 5.02 GHz, 467
    3.33 GHz, 540
    one module disabled, 5 GHz, 590
    3.8 GHz, 608
    Intel i7-3770, 3.4 GHz, 662
    4.17 GHz, 664
    4.2 GHz, 675
    4.28 GHz, 683
    4.41 GHz, 703
    4.56 GHz, 724
    4.68 GHz, 743
    4.78 GHz, 765
    Intel 4770K at 4.4 GHz, 822

    Clearly, an overclocked Intel will beat this chip in this test but if you have an Intel that can't be overclocked that may be a different story, depending on the stock clockspeed of the chip. Also, Cinebench is, as far as I know, a test that favors Intel since it relies heavily on FPU. None of the APUs are close to FX's performance so the lack of even one 8 thread FX in the charts is not good.

    The single thread performance of FX is particularly weak but it can be improved quite a bit by setting the chip to 1 core per module because high clocks can be achieved with much less heat than when the full 8 threads are enabled. The downside is that multithread performance suffers (in tests like Cinebench that can use all 8 threads... perhaps not so much in programs that max out around 4).

    single thread

    A10-7850K, 92
    4.2 GHz, 99
    A10-6800K, 100
    4.78 GHz, 111
    5 GHz, 118
    5.02 GHz, (one core per module), 120
    5.21 GHz (only one module enabled), 122
    5.17 GHz (one core per module), 122
    Intel i7 3770, 3.4 GHz, 138
    Intel i7 3930K, 3.3 GHz, 148
  • Oxford Guy - Saturday, June 6, 2015 - link

    highest scoring APU in the multithread test:

    A10-6800K, 325
  • sireangelus - Saturday, June 6, 2015 - link

    Anand, i'm going to heavly critizice your linux testing method.

    you go to great lengths to adjust and compensate for turbo modes, but on an ubuntu 11.04 it should completely ignore turbo modes since sandy bridge or does not even know what turbAdvances in the linux kernelo modes are, severely limiting both new intel and amd cpu. Also, the power profile is changed alongside the new intel pstate driver, that greatly improved performance under linux in respect to the past; also, new kernels are optimized for the eDram on the crystal well cpus. I suggest you start moving the whole testing platform to something more current or simply redo tests once a year with an updated kernel. You could use the phoromatic platform to automatize the procedure.
  • Ramon Zarat - Sunday, June 7, 2015 - link

    Please add clock for clock comparison with older Intel CPU! Back to at least Sandy Bridge or even further if possible.
  • ES_Revenge - Sunday, June 7, 2015 - link

    So clearly Intel has now topped AMD's one remaining trump card--integrated graphics performance. Of course you're paying over 2x the cost for the privilege. One might argue that you're still getting a much better CPU at the same time, which is true, but most people just look at the absolute cost and the fact that the A10 is not all that bad a CPU.

    I think this becomes *much* more interesting if/when Intel starts producing *i3* CPUs with Iris Pro. Then it's really game over for AMD, unless Zen is something spectacular to allow them to catch up (or even get close) in CPU performance. AMD could also easily up the SPs in their APUs to something like ~1024 which would give them R7 265/PS4/GTX 750 Ti -class performance. The only problem is AMD hits another hitch there as they don't have the thermal/power envelope to do so given A10s can already throttle the CPU side when the GPU is in heavy use, in order to stay within TDP limits. AMD's lack of power and thermal efficiency with their GPUs (as competent as they are otherwise) also poses a serious problem in putting the same tech on an APU die.

    Seems like AMD has to hit a homerun with both Zen for performance and their GPUs for efficiency in the coming year. However from everything we know about Fiji and the fact that the rest of the [GPU] lineup will be re-brands, it doesn't seem likely. Perhaps it's time to quit the CPU business, lol. Either that or release APUs with high-end graphics, boxed with CLC/AIO liquid coolers (or massive air coolers).
  • 0ldman79 - Sunday, June 7, 2015 - link

    I know it's a dead socket, but could we AM3+ users request a CPU be thrown in the mix?

    I keep reading, keep looking, the reviews look impressive, so I check the Anandtech Bench and my 6300 is still faster than the APU's.

    In all honesty, that has to hurt AMD. Those of us that went with the "big boy socket" are still faster overall even though the APU has made big leaps in IPC and clock speed.

    Fact is we're still out here and the only way to get faster across the board is to jump Intel.
  • ES_Revenge - Monday, June 8, 2015 - link

    Well keep in mind your FX 6300 has two more cores (or one more module) and it has 8MB L3 compared to no L3 at all on the APUs. If they made a "6 core" APU with L3 on Kaveri/Godavari it would be faster.. at least until it starts hitting the TDP limits, lol. This of course is probably why there are no 6 or 8 CPU-core APUs--because they're already having problems with keeping TDP within limits with a 512SP GPU and 4-core CPU.

Log in

Don't have an account? Sign up now