Battlefield 4

Kicking off our benchmark suite is Battlefield 4, DICE’s 2013 multiplayer military shooter. After a rocky start, Battlefield 4 has since become a challenging game in its own right and a showcase title for low-level graphics APIs. As these benchmarks are from single player mode, based on our experiences our rule of thumb here is that multiplayer framerates will dip to half our single player framerates, which means a card needs to be able to average at least 60fps if it’s to be able to hold up in multiplayer.

Battlefield 4 - 3840x2160 - Ultra Quality - 0x MSAA

Battlefield 4 - 3840x2160 - Medium Quality

Battlefield 4 - 2560x1440 - Ultra Quality

Battlefield 4 is going to set the pace for the rest of this review. In our introduction we talked about how the GTX 980 Ti may as well be the GTX Titan X, and this is one such example why. With a framerate deficit of no more than 3% in this benchmark, the difference between the two cards is just outside the range of standard run-to-run experimental variation that we see in our benchmarking process. So yes, it really is that fast.

In any case, after stripping away the Frostbite engine’s expensive (and not wholly effective) MSAA, what we’re left with for BF4 at 4K with Ultra quality puts the 980 Ti in a pretty good light. At 56.5fps it’s not quite up to the 60fps mark, but it comes very close, close enough that the GTX 980 Ti should be able to stay above 30fps virtually the entire time, and never drop too far below 30fps in even the worst case scenario. Alternatively, dropping to Medium quality should give the card plenty of headroom, with an average framerate of 91.8fps meaning even the lowest framerate never drops below 45fps.

Meanwhile our other significant comparison here is the GTX 980, which just saw its price cut by $50 to $499 to make room for the GTX 980 Ti. At $649 the GTX 980 Ti ideally should be 30% faster to justify its 30% higher price tag; here it’s almost exactly on that mark, fluctuating between a 28% and 32% lead depending on the resolution and settings.

Finally, shifting gears for a moment, gamers looking for the ultimate 1440p card will not be disappointed. GTX 980 Ti will not get to 120fps here (it won’t even come close), but at 77.7fps it’s well suited for driving 1440p144 displays. In fact and GTX Titan X are the single-GPU cards to do better than 60fps at this resolution.

NVIDIA's Computex Announcements & The Test Crysis 3
Comments Locked

290 Comments

View All Comments

  • xenol - Monday, June 1, 2015 - link

    Transistor count means nothing. The GTX 780 Ti has 2.8 billion transistors. The GTX 980 has around 2 billion transistors, and yet the GTX 980 can dance with the GTX 780 Ti in performance.

    As the saying goes... it's not the size that matters, only how you use it.
  • Niabureth - Monday, June 1, 2015 - link

    Don't want to sound like a messer schmitt but thats 2,8K cuda cores for GK110, and 2K for the GM204. The GK110 has 7.1 billion transistors.
  • jman9295 - Tuesday, June 2, 2015 - link

    In this very article they list the transistor count of those two cards in a giant graph. The 980 has 5.2 billion transistors and the 780ti 7.1 billion. Still, your point is the same, they got more performance out of less transistors on the same manufacturing node. All 28nm means is how small the gap is between identical components, in this case the CUDA cores. Each Maxwell CUDA is clearly more efficient than each Kepler. Also helping is the double VRAM size which probably allowed them to also double the ROP count which greatly improved transistor efficiency and performance.
  • Mithan - Sunday, May 31, 2015 - link

    It matters because we are close to .16/20nm GPU's, which will destroy these.
  • dragonsqrrl - Sunday, May 31, 2015 - link

    "we are close to .16/20nm GPU's"

    People said the same thing when the 750Ti launched. I'll give give you one thing, we are closer than we were, but we are not "close".
  • Kevin G - Monday, June 1, 2015 - link

    The difference now is that there are actually 20 nm products on the market today, just none of them are GPUs. It seems that without FinFET, 20 nm looks to be optimal only for mobile.
  • felicityc - Tuesday, January 11, 2022 - link

    What if I told you we are on 8nm now?
  • LemmingOverlord - Monday, June 1, 2015 - link

    @SirMaster - The reason people care about the process node is because that right now - in mid-2015 - this is an extremely mature (ie: old but well-rehearsed) manufacturing process, which has gone through several iterations and can now yield much better results (literally) than the original 28nm process. This means that it's much cheaper to produce because there are less defective parts per wafer (ie: higher yield). Hence ComputerGuy2006 saying what he said.

    Contrary to what other people say "smaller nm" does NOT imply higher performance. Basically when a shrink comes along you can expect manufacturers to do 1 of two things:

    a) higher transistor count in a similar die size, with similar power characteristics when compared to its ancestor - and therefore higher performance
    b) same transistor count in a much smaller die size, therefore better thermals/power characteristics

    Neither of these factor in architectural enhancements (which sometimes are not that transparent, due to their immaturity).

    So ComputerGuy2006 is absolutely right. Nvidia will make a killing on a very mature process which costs them a below-average amount of money to manufacture.

    In this case Nvidia is using "defective" Titan X chips to manufacture 980 Ti. Simple as that. Their Titan X leftovers sell for $350 less and you still get almost all the performance a Titan would give you.
  • royalcrown - Wednesday, June 3, 2015 - link

    I take issue with point b) " same transistor count in a much smaller die size, therefore better thermals/power characteristics"

    I disagree because the same die shrink can also cause a rise in power density, therefore WORSE characteristics (especially thermals).
  • Gasaraki88 - Monday, June 1, 2015 - link

    Smaller nm, bigger e-peen.

Log in

Don't have an account? Sign up now