Final Words

For years Intel has been criticized for not caring about the client SSD space anymore. The X25-M and its different generations were all brilliant drives and essentially defined the standards for a good client SSD, but since then none of Intel's client SSDs have had the same "wow" effect. That's not to say that Intel's later client SSDs have been inferior, it's just that they haven't really had any competitive advantage over the other drives on the market. It's no secret that Intel changed its SSD strategy to focus on the enterprise segment and frankly it still makes a lot of sense because the profits are more lucrative and enterprise has a lot more room for innovation as the customers value more than just rock-bottom pricing. 

With the release of the SSD 750, it's safe to say that any argument of Intel not caring about the client market is now invalid. Intel does care, but rather than bringing products with new complex technologies to the market at a very early stage, Intel wants to ensure that the market is ready and there's industry wide support for the product. After all, NVMe requires BIOS support and that support has only been present for a few months now, making it logical not to release the SSD 750 any sooner. 

Given the enterprise background of the SSD 750, it's more optimized for consistency than raw peak performance. The SM951, on the other hand, is a more generic client drive that concentrates on peak performance to improve performance under typical client workloads. That's visible in our benchmarks because the only test where the SSD 750 is able to beat the SM951 is The Destoyer trace, which illustrates a very IO intensive workload that only applies to power users and professionals. It makes sense for Intel to focus on that very specific target group because those are the people who are willing to pay premium for higher storage performance.

With that said, I'm not sure if I fully agree with Intel's heavy random IO focus. The sequential performance isn't bad, but I think the SSD 750 as it stands today is a bit unbalanced and could use some improvements to sequential performance even if it came at the cost of random performance. 

Price Comparison (4/2/2015)
  128GB 256GB 400GB 512GB 1.2TB
Intel SSD 750 (MSRP) - - $389   $1,029
Samsung SM951 $120 $239 - $459 -

RamCity actually just got its first batch of SM951s this week, so I've included it in the table for comparison (note that the prices on RamCity's website are in AUD, so I've translated them into USD and also subtracted the 10% tax that is only applicable to Australian orders). The SSD 750 is fairly competitive in price, although obviously you have to fork out more money than you would for a similar capacity SATA drive. Nevertheless, going under a dollar per gigabyte is very reasonable given the performance and full power loss protection that you get with the SSD 750. 

All in all, the SSD 750 is definitely a product I recommend as it's the fastest drive for IO intensive workloads by a large margin. I can't say it's perfect and for slightly lighter IO workloads the SM951 wins my recommendation due to its more client-oriented design, but the SSD 750 is really a no compromise product that is aimed for a relatively small high-end niche, and honestly it's the only considerable option in its niche. If your IO workload needs the storage performance of tomorrow, Intel and the SSD 750 have you covered today.

ATTO, AS-SSD & TRIM Validation
Comments Locked

132 Comments

View All Comments

  • knweiss - Thursday, April 2, 2015 - link

    Kristian, you wrote "for up to 4GB/s of bandwidth with PCIe 3.0 (although in real world the maximum bandwidth is about 3.2GB/s due to PCIe inefficiency)". Is this really true? PCIe 2.0 uses 8b/10b encoding with 20% bandwidth overhead which would match your numbers. However, PCIe 3.0 uses 128b/130b encoding with only 1.54% bandwidth overhead. Could you please explain the inefficiency you mentioned? Thanks in advance!
  • DanNeely - Thursday, April 2, 2015 - link

    The real world number includes the bandwidth consumed by PCIe packet headers, NVME packet headers, NVME command messages, etc. Those are over and above the penalty from the encoding scheme on the bus itself.
  • IntelUser2000 - Thursday, April 2, 2015 - link

    The 4GB bandwidth takes into account the encoding scheme.

    Each lane of v1 PCI-Express had 2.5GT/s so with 8b/10b encoding you end up with 2.5G/10 = 250MB/s. Quadruple that for four lanes and you end up with 1GB/s.

    v2 of PCI-Express is double that and v3 of PCI-Express is further double that and there is the 4GB number.
  • aggrokalle - Thursday, April 2, 2015 - link

    i'm interrested in this as well...so how many nand-channels got the 1.2tb and 400gb version Kristian?
  • tspacie - Thursday, April 2, 2015 - link

    Was there an approximate release date?
  • gforce007 - Thursday, April 2, 2015 - link

    When will these be available for purchase? Also I have a m.2 slot on my motherboard (z10PE-D8 WS) Id rather utilize the 2.5 15mm form factor. I am a bit confused. I dont think that board has SFF-8639. Is there an adapter. Will that affect performance? I assume so and by how much?
  • knweiss - Thursday, April 2, 2015 - link

    The motherboard (host) end of the cable has a square-shaped SFF-8643(!) connector. E.g. ASUS ships an M.2 adapter card for the X99 Sabertooth that offers a suitable port. SFF-8639 is on the drive's end.
  • emn13 - Thursday, April 2, 2015 - link

    That endurance number is scarily low for a 1.2TB drive. 70GB a day for 5 years - thats about 128 TB of writes total, and that's just 100 drive writes! Put another way, at around 1GB/sec (which this drive can easily do), you'd reach those 100 drive writes in just 36 hours.

    Of course, that's an extremely intensive workload, but I sure hope this is just intel trying to avoid giving any warrantee rather than an every remotely realistic assessment of the drives capabilities.
  • p1esk - Thursday, April 2, 2015 - link

    This is a consumer drive. What's your use case where you write more than 70GB a day?
  • juhatus - Friday, April 3, 2015 - link

    Raw 4k video and its not even close to being enough.

    At 4K (4096 x 2160) it registers 1697 Mbps which equals 764 GB/hour of 4K video footage. A single camera large Hollywood production can often shoot 100 hours of footage. That’s 76 TB of 4K ProRes 4444 XQ footage.

    The upcoming David Fincher film GONE GIRL crept up on 500 hours of raw footage during its multi camera 6K RED Dragon production. That equates to roughly 315 TB of RED 6K (4:1) footage. Shit just got real for data management and post production workflows.

Log in

Don't have an account? Sign up now