Overview of the Competitors

Let's sum everything up in one big table.

ARM/Intel SoC 2015 Comparison
SoC Intel Xeon-D Intel Atom C2000 AppliedMicro X-Gene 1
(X-Gene 2)
AMD A1100 Cavium Thunder-X Broadcom Vulcan
Architecture Broadwell Silvermont Storm (ShadowCat) A57 Thunder-X Vulcan
Cores
Socket
8
single
8
single
8 (16)
sngle
4-8
single
16-48
dual
20?
Max. CPU Clockspeed GHz 2.4GHz 2.4GHz
(2.8GHz)
2GHz 2.5 Ghz 3GHz
Process technology Intel 14nm Intel 22nm TSMC 40nm
(TSMC 28nm)
GF 28nm GF 28nm TSMC 16nm
L1 Cache 32KB I
32KB D
32KB I
24KB D
32KB I (*)
32KB D (*)
48KB I
32KB D
78KB I
32KB D
32KB I
32KB D
Decode 4 2 4 3 2 4
Max. IPC (int) 5 2 4 3 2 4
Exe Ports 8 4 8 8 4? 6
Max. FP Performance 2x 256 bit 1x 128 bit 2x 128 bit 2x 128 bit 2x 128 bit 2x 128 bit
OoO buffer 192 32 >100 128 40 180
L2 Cache 8x 256KB 4x 1MB 4x 256KB? (*) 4x 1MB 16MB 20x 256KB
L3 Cache 8MB? - 8MB 8MB - ?
Max. RAM 128GB 64GB 128GB 128GB 1TB ?
Memory Bus Width 2x 64-bit 2 x 64-bit 4x 64-bit 2x 64-bit 4x 64-bit 4x 64-bit
DRAM (best) DDR4-
2133
DDR3-
1600
DDR3-
1866
DDR3-
1866
DDR4-
2133
DDR4-
2133
TDP (top SKU) 45W 20W 40W
(25 W?)
25W +/- 95 W ?
Available Q2-Q3
2015
Early
2014
Now
(Q2 2015?)
Q1-Q2
2015
Q1
2015
Q3
2015

(*) Deduced from Ganesh's article about the Helix SoCs

These are paper specifications of course, so they should be interpreted with a grain of salt. It looks like the AMD A1100 should top the Atom C2000 and go after the low end of the Xeon E3. AMD's Opteron A1100 is already available, but the current development kits do not hit the clock speed and performance targets.

The Thunder-X single-threaded performance in "traditional workloads" might only be at the level of the Atom C2000, but scale-out and network/crypto acceleration could give some remarkable results in certain workloads. The Cavium SoC is the hardest to predict and will show a very variable performance profile as it also incorporates many very specialized hardware accelerators. The Thunder-X reference servers are announced and should be available in the coming weeks.

The X-Gene is currently the widest ARM architecture with extra hardware acceleration mostly focused on networking. The X-Gene TDP was great on paper (25W when announced) but there are many indications (40W TDP) that AppliedMicro really needs the 28nm X-Gene 2 to be truly competitive in the performance/watt battle arena. The X-Gene 2 should be available around Q2 2015.

 

Intel's Response First Performance Measurements
Comments Locked

78 Comments

View All Comments

  • JohanAnandtech - Tuesday, December 16, 2014 - link

    Did you miss this page?
    http://www.anandtech.com/show/8776/arm-challinging...

    The software ecosystem is developing...there is no indication that this will stop soon.
  • Kevin G - Wednesday, December 17, 2014 - link

    The LAMP stack is there and can easily give ARM a foot hold. Scaling up they'll need vendors like Oracle to port key applications. ARM will also need to enhance there RAS to be production capable with that software.
  • Samus - Tuesday, December 16, 2014 - link

    Johan,

    You need to review the compatibility of the Xeon E3's. They actually work in just about any Intel 80 or 90-series board. I have an E3-1230v3 in an Asus ITX H87 on the PC I'm currently typing on.

    A C220 chipset is NOT required.
  • JohanAnandtech - Tuesday, December 16, 2014 - link

    you are right :-).

    By "Xeon E3 needs C220" I meant that you need to add that part to calculate the power consumption per node. And the E3 needs it to support ECC RAM.
  • eanazag - Tuesday, December 16, 2014 - link

    Ubuntu's ARM version OS is a big deal. I believe the fact that MS had been dragging on with supporting RT was in fact to have something to port to the server side. Even though RT is mostly a dud at first, it could still be sensible and sell in a server config.

    I'm waiting for AMD to finally sell the ARM chip in the channel so I can throw a mobo with it together. If it has 10GbE I would be all over it.
  • rootheday3 - Tuesday, December 16, 2014 - link

    Intel also has Rangeley soc which includes crypto block for comms usage
  • wintermute000 - Tuesday, December 16, 2014 - link

    "What if I need massive amounts of memory but moderate processing power? The Xeon E3 only supports 32GB."

    Thousands of techs labbing away @ home nod sagely in agreement. Right now our choices are to scale horizontally or live with loud jet-engine ex-enterprise gear, because I can't get 64gb of RAM into a whitebox.
  • wintermute000 - Tuesday, December 16, 2014 - link

    Clarification: a whitebox that I can afford i.e. not a Xeon E5. lol
  • beginner99 - Wednesday, December 17, 2014 - link

    What kind of servers use tons of RAM and little processing power? Right, memcached and similar stuff. But let's be honest. That is still a niche market given the total server market. Most servers are just standard multipurpose servers running some company internal low-traffic (web) application. They don't need memcached. Memcached is for huge internet deployments and let's be honest that in itself is niche.

    I work in a 10'000 people company and I would bet you $1000 we have 0 memcached servers. I don't really know except for the lack of performance in core apps and the questionable competency of our IT.
  • bobbozzo - Wednesday, December 17, 2014 - link

    VM servers.
    And ZFS-filesystem storage (NAS/SAN) servers. e.g. FreeNAS. Add much more RAM if using DeDup.

Log in

Don't have an account? Sign up now