More Competition

There is no doubt that customers would benefit from Intel being challenged in the server market. There have been people arguing that the server market is healthy even with only one dominant player, since Intel is doomed to compete with previous Intel CPUs and cannot afford to slow down its update cycle. We disagree, as it is clear that the lack of competition is causing Intel to price its top Xeon EP quite a bit higher. In the midrange, there is no pressure to offer much better performance per dollar: a small increase is what we get. The recently launched Xeon E5 v3 is barely 15% faster at the same price than the Xeon E5 v2. So we would definitely like to see some healthy competition.

Are Economies of Scale and Volume Enough?

Yes, economies of scale is one of the reasons that Intel was able to overtake the RISC competition. However, simply accounting Intel's success back at the end of previous century to being the player with the highest unit sales is short sighted. Look at the table below, which describes the situation back in late 1995:

Vendor CPU SPECint95 SPECfp95
Intel Pentium Pro 200 8.2 6.8
Digital Alpha 21164 333 MHz 9.8 13.4
MIPS (SGI) R8000 90 MHz 5.5 12
SUN Ultra I 167 MHz 6.6 9.4
HP PA7200-RISC 120MHz 6.4 9.1

There are three things you should note. First, excluding the Alpha 21164, Intel managed to outperform every RISC competitor out there with their first server chip in integer performance. Intel managed this by excellent execution and innovative micro-architecture features (such as the 256KB SRAM + core MCM package and out-of-order micro-ops back-end). Intel also had a process technology lead and used 350nm while the rest of the competition was still stuck at 500nm.

Second, Intel was lucky that the top performer – Alpha – had the lowest marketshare, software base, and marketing power. Third, the server and workstation market was divided between the RISC Players. Software development was very fragmented among the RISC platforms.

So in a nutshell, there were several reasons why Intel succeeded at breaking into the server market besides their larger user base in the desktop world:

  1. Focused investments in a vertical production line and excellent execution, and as a result the best process technology in the world
  2. The performance and technology leader was not the strongest player in the market
  3. The market was fragmented, so divide and conquer was much easier

Currently, the ARM SoC challengers do not have those advantages. As far as we know, Intel's process is still the most advanced process technology on the planet. Samsung is probably close but at the moment their next generation process is not available to the Intel competitors.

Right now, Intel dominates - or more accurately owns - the server market. Every possible piece of expensive software runs on Intel, which is a very different situation from back in the RISC world of the nineties, where many pieces of important software only ran on certain RISC CPUs. Today, the server market is anything but fragmented. That makes the scale advantage of the ARM competitors a very weak argument. Intel's user base – the growing server market and declining desktop market – is large enough to sustain heavy R&D investments for a long time, contrary to the RISC vendors in the nineties which had to share a very profitable but again fragmented market.

If you're not convinced, just imagine the Alpha 21164 was the dominant RISC Server CPU, with 90-95% server market share. Just imagine that instead of having some server applications running only on SPARC or on HP PA-RISC, that every server software ran on Alpha. Now combine this with the fact that Windows on Alpha was available. It is pretty obvious that it would be have been a lot harder for Intel to break into the server and workstation market had this been the case.

So just because ARM SoCs are sold in the billions does not mean they will automatically overtake Intel server CPUs. Intel beat the RISC players because the market was fragmented, and because none of them were executing as well as Intel. For ARM alternatives to really gain traction, they need to do a lot more than simply compete in a few niche markets, as Calxeda has shown.

First Performance Measurements The Evolving Server Market
Comments Locked

78 Comments

View All Comments

  • jjj - Tuesday, December 16, 2014 - link

    If you look at phones and tabs ,we might be getting some rather big custom cores in 2015 and 2016. Apple and Nvidia already have that, ofc much smaller than Intel's core when adjusting for process (actually that's an assumption when it comes to Denver since don't think we've seen any die shots).
    Intel at the same time in consumer is pushing for more non-CPU/GPU compute units and low power and they might face a tough question about core size and even process (if they target low clocks, low power , or the opposite).Got to wonder if at some point they'll have to go for a big core just for server.Would make things even more interesting.
    Might not matter but Apple kinda has the perf for an ARM Macbook Air if they go quad. Not something worth doing for such low volume but doable when they go quad on all ipads or sooner if they launch a bigger ipad. Could be a trigger for others pushing more ARM based Chromebooks and beyond. That would set the stage for even bigger ARM cores.
    Also got the feeling Nintendo will go ARM in 2016 and not many reasons for Sony and M$ not to go that way if they ever make a new gen- just another market for bigger ARM cores, any significant revenue helps with dev costs so it matters.
  • CajunArson - Tuesday, December 16, 2014 - link

    1. The Core-m is widely derided as not being fast enough for the MacBook Air.
    2. The Core-m is easily twice as fast as the A8X in benchmarks that count... even Anandtech's own benchmarks show that. Furthermore, when you step away from web browsers and get to use the advanced features of the Core-m like AVX, that advantage jumps to about 8x faster in compute-heavy benchmarks like Linpack.
    3. Even the mythical A9 coming in 2015 is expected to have roughly a 20% performance boost over the A8x.
    4. Any real computer using an ARM chip would have to have a translation layer just like the old Rosetta to run the huge library of x86 software out there. Rosetta sort of worked because the Core 2 chips from Intel were *massively* faster than the PowerPC parts they replaced. Now you expect to run the translation overhead on an A9 chip that is slower -- by a large margin -- than the Core-m parts you've already derided as not being good enough?

    Yeah, I'm not holding my breath.
  • fjdulles - Tuesday, December 16, 2014 - link

    You may be right, but remember that ARM chips using the same power budget as Intel core i* will no doubt be clocked higher and perform that much better. Not sure if that will be competitive but it would be interesting to see.
  • wallysb01 - Tuesday, December 16, 2014 - link

    Only if you want a glorified tablet as a laptop. The software most people use in real work on laptops/desktops is not going to be ported over to ARM at an speed, even if ARMs could do that work reasonably well.
  • Kevin G - Wednesday, December 17, 2014 - link

    I'm under the impression that a good chunk has already been ported. MS Office for example is native ARM on Windows RT. Various Linux distributions have ARM ports completed with ARM based office and desktop software. The main thing missing are some big commercial applications like Photoshop etc.

    The server side of thing is similar with Linux and open software ports. MS is weirdly absent but I suspect that an ARM based version of Windows 2012/2014 is waiting of major hardware to be released. Much of the Windows base is already ported over to ARM due to Windows RT.
  • Kevin G - Wednesday, December 17, 2014 - link

    Indeed. Performance of ARM platforms once power constraints have been removed is a very open question. So far all the core designs in products have been used in mobile where SoC power consumption is less than 5 W. What a 100 W product would look is an open and very interesting question.
  • Ratman6161 - Wednesday, December 17, 2014 - link

    If they "use the same power budget as an Intel core i*" then what would be the point?
  • jjj - Tuesday, December 16, 2014 - link

    Ok you are focusing on the wrong thing but lets do that anyway.
    I have never claimed that Apple's own SoC would beat Intel's current SoCs, just that the perf would be enough if they go quad and obviously higher clocks.
    When you talk Core M you should remember that the price at launch was $281 so it's not good enough for anything.
    Anyway how about you compare a possible Apple SoC with a MacBook Air from 2011, lets face it the Air is a crap machine anyway , not much perf and TN panel for w/e ridiculous price it costs now and it's users are certainly not doing any heavy lifting with it.
    At the same time Apple's own 15- 20$ SoC would allow them a much cheaper machine and a presence in a price segment they never competed in, adding at least 5B of revenue per year (including cannibalization) and a share gain in PC of 2-3%.
    But then again the point was that there are a bunch of trends that could favor bigger ARM cores.
  • Morawka - Wednesday, December 17, 2014 - link

    it might cost them $20 for the A8X in fab cost, but the R&D for that chip is in the 10's of millions. Factor that in, to however many they ship, and it adds at least another $20 per chip
  • jospoortvliet - Wednesday, December 17, 2014 - link

    Even more obvious then that this would save them money by spreading out the fixed costs over more devices...

Log in

Don't have an account? Sign up now