Integrated GPU Performance: BioShock Infinite

The first benchmark in our test is Bioshock Infinite, Zero Punctuation’s Game of the Year for 2013. Bioshock Infinite uses the Unreal Engine 3, and is designed to scale with both cores and graphical prowess. We test the benchmark using the Adrenaline benchmark tool and their three default settings of Performance (1280x1024, Low), Quality (1680x1050, Medium/High) and Xtreme (1920x1080, Maximum) noting down the average frame rates and the minimum frame rates.

Bioshock Infinite, Performance Settings

Bioshock Infinite: Performance

For BI: Performance we see the Iris Pro being top of the IGPs, although the next six in the list are all AMD. The Kaveri cores are all between the 6800K and 5800K for this test, and all comfortably above 60 FPS average.

Bioshock Infinite, Quality Settings

Bioshock Infinite: Quality

For the quality settings, the Iris Pro starts to struggle and all the R7 based Kaveri APUs jump ahead of the A10-6800K - the top two over the Iris Pro as well.

Bioshock Infinite, Xtreme Settings

Bioshock Infinite: Xtreme

The bigger the resolution, the more the Iris Pro suffers, and Kaveri takes three out of the top four IGP results.

Integrated GPU Performance: Tomb Raider

The second benchmark in our test is Tomb Raider. Tomb Raider is an AMD optimized game, lauded for its use of TressFX creating dynamic hair to increase the immersion in game. Tomb Raider uses a modified version of the Crystal Engine, and enjoys raw horsepower. We test the benchmark using the Adrenaline benchmark tool and their three default settings of Performance (1280x1024, Low), Quality (1680x1050, Medium/High) and Xtreme (1920x1080, Maximum) noting down the average frame rates and the minimum frame rates.

Tomb Raider, Performance Settings

Tomb Raider: Performance

The top IGP for Richland and Kaveri are trading blows in TR.

Tomb Raider, Quality Settings

Tomb Raider: Quality

The Iris Pro takes a small lead, while the Kaveri 95W APU show little improvement over Richland. The 45W APU however is pushing ahead.

Tomb Raider, Xtreme Settings

Tomb Raider: Xtreme

At the maximum resolution, the top Kaveri overtakes Iris Pro, and the 45W Kaveri it still a good margin ahead of the A10-6700T.

Integrated GPU Performance: F1 2013

Next up is F1 2013 by Codemasters. I am a big Formula 1 fan in my spare time, and nothing makes me happier than carving up the field in a Caterham, waving to the Red Bulls as I drive by (because I play on easy and take shortcuts). F1 2013 uses the EGO Engine, and like other Codemasters games ends up being very playable on old hardware quite easily. In order to beef up the benchmark a bit, we devised the following scenario for the benchmark mode: one lap of Spa-Francorchamps in the heavy wet, the benchmark follows Jenson Button in the McLaren who starts on the grid in 22nd place, with the field made up of 11 Williams cars, 5 Marussia and 5 Caterham in that order. This puts emphasis on the CPU to handle the AI in the wet, and allows for a good amount of overtaking during the automated benchmark. We test at three different levels again: 1280x1024 on Low, 1680x1050 on Medium and 1920x1080 on Ultra. Unfortunately due to various circumstances we do not have Iris Pro data for F1 2013.

F1 2013, Performance Settings

F1 2013: Performance

F1 likes AMD here, although moving from Kaveri to Richland at the high end seems a bit of a regression.

F1 2013, Quality Settings

F1 2013: Quality

Similarly in the Quality settings, none of the Intel integrated graphics solutions can keep up with AMD, especially Kaveri.

F1 2013, Xtreme Settings

F1 2013: Xtreme

On extreme settings, at 1080p, the top Kaveri APU manages to hit over 30 FPS average during the benchmark. The other A8 Kaveri data is not too far behind.

CPU Performance: Continued Processor Graphics: Sleeping Dogs, Company of Heroes 2


View All Comments

  • boozed - Tuesday, January 14, 2014 - link

    You must be a hoot at parties. Reply
  • boozed - Wednesday, January 15, 2014 - link

    And I hit reply on the wrong bloody comment. My apologies... Reply
  • monsieurrigsby - Wednesday, January 29, 2014 - link

    I'm a bit slow to the party, but talk of discrete GPUs leads me to the main question I still have that I don't see explained (possibly because the authors assume deeper understanding of CPU/GPU programming), and haven't seen discussed elsewhere. (I've not looked *that* hard...)

    If you have a Kaveri APU and a mid/high-end discrete GPU that won't work with Dual Graphics (if it arrives), what processing can and can't use the on-APU GPU? If we're talking games (the main scenario), what can developers offload onto the onboard GPU and what can't they? What depends on the nature of the discrete card (e.g., are modern AMD ones 'HSA enabled' in some way?)? If you *do* have a Dual Graphics capable discrete GPU, does this still limit what you can *explicitly* farm off to the onboard GPU?

    My layman's guess is that GPU compute stuff can still be done but, without dual graphics, stuff to do with actual frame rendering can't. (I don't know enough about GPU programming to know how well-defined that latter bit is...)

    It's just that that seems the obvious question for the gaming consumer: if I have a discrete card, in what contexts is the on-APU GPU 'wasted' and when could it be used (and how much depends on what the discrete card is)? And I guess the related point is how much effort is the latter, and so how likely are we to see elements of it?

    Am I missing something that's clear?
  • monsieurrigsby - Wednesday, January 29, 2014 - link

    Plus detail on Mantle seems to suggest that this might provide more control in this area? But are there certain types of things which would be *dependent* on Mantle?
  • nissangtr786 - Tuesday, January 14, 2014 - link

    I told amd fanboys the fpu on intel and the raw mflops mips ofintel cpu destroy current a10 apus, its no real suprise all those improvement show very little in benchmarks with kaveri steamroller cores. amd fanboys said it will reach i5 2500k performance, I said i3 4130 but overall i3 4130 will be faster in raw performance and I am right. I personally have an i5 4430 and it looks like i5's still destroy these a10 apu in raw performance.
    a10-7850k Sharpen Filter Multi-core 5846 4.33 Gflops
    i5 4430 Sharpen Filter Multi-core 11421 8.46 Gflops
  • gngl - Tuesday, January 14, 2014 - link

    "I personally have an i5 4430 and it looks like i5's still destroy these a10 apu in raw performance."

    You seem to have a very peculiar notion of what "raw performance" means, if you're measuring it in terms of what one specific benchmark does with one specific part of the chip. There's nothing raw about a particular piece of code executing a specific real-world benchmark using a particular sequence of instructions.
  • chrnochime - Tuesday, January 14, 2014 - link

    Who cares what CPU you have anyway. If you want to show off, tell us you have at least a 4670k and not a 4430. LOL Reply
  • keveazy - Tuesday, January 14, 2014 - link

    It's relevant that he used the i5 4430 in his comment. Compare the price range and you'll see. These AMD apu's are useless unless your just looking to build a PC that's not meant to handle heavily threaded tasks. Reply
  • tcube - Thursday, January 16, 2014 - link

    Ok... heavily threaded tasks ok... examples! Give me one example of one software 90% of pc users use 90% of the time that this apu can't handle... then and ONLY then is the cpu relevant! Other then that it's just bragging rights and microseconds nobody cares about on a PC!

    Instead we do care to have a chip that plays anything from hd video to AAA 3d games and also is fast enough for anything else and don't need a gpu for extra cost, power usage heat and noise! And that ain't any intel that fits on a budget!
  • keveazy - Saturday, January 18, 2014 - link

    I'll give you 1 example. Battlefield 4. Reply

Log in

Don't have an account? Sign up now