How it Plays

The requirements for G-Sync are straightforward. You need a G-Sync enabled display (in this case the modified ASUS VG248QE is the only one “available”, more on this later). You need a GeForce GTX 650 Ti Boost or better with a DisplayPort connector. You need a DP 1.2 cable, a game capable of running in full screen mode (G-Sync reverts to V-Sync if you run in a window) and you need Windows 7 or 8.1.

G-Sync enabled drivers are already available at GeForce.com (R331.93). Once you’ve met all of the requirements you’ll see the appropriate G-Sync toggles in NVIDIA’s control panel. Even with G-Sync on you can still control the display’s refresh rate. To maximize the impact of G-Sync NVIDIA’s reviewer’s guide recommends testing v-sync on/off at 60Hz but G-Sync at 144Hz. For the sake of not being silly I ran all of my comparisons at 60Hz or 144Hz, and never mixed the two, in order to isolate the impact of G-Sync alone.

NVIDIA sampled the same pendulum demo it used in Montreal a couple of months ago to demonstrate G-Sync, but I spent the vast majority of my time with the G-Sync display playing actual games.

I’ve been using Falcon NW’s Tiki system for any experiential testing ever since it showed up with NVIDIA’s Titan earlier this year. Naturally that’s where I started with the G-Sync display. Unfortunately the combination didn’t fare all that well, with the system exhibiting hard locks and very low in-game frame rates with the G-Sync display attached. I didn’t have enough time to further debug the setup and plan on shipping NVIDIA the system as soon as possible to see if they can find the root cause of the problem. Switching to a Z87 testbed with an EVGA GeForce GTX 760 proved to be totally problem-free with the G-Sync display thankfully enough.

At a high level the sweet spot for G-Sync is going to be a situation where you have a frame rate that regularly varies between 30 and 60 fps. Game/hardware/settings combinations that result in frame rates below 30 fps will exhibit stuttering since the G-Sync display will be forced to repeat frames, and similarly if your frame rate is equal to your refresh rate (60, 120 or 144 fps in this case) then you won’t really see any advantages over plain old v-sync.

I've put together a quick 4K video showing v-sync off, v-sync on and G-Sync on, all at 60Hz, while running Bioshock Infinite on my GTX 760 testbed. I captured each video at 720p60 and put them all side by side (thus making up the 3840 pixel width of the video). I slowed the video down by 50% in order to better demonstrate the impact of each setting. The biggest differences tend to be at the very beginning of the video. You'll see tons of tearing with v-sync off, some stutter with v-sync on, and a much smoother overall experience with G-Sync on.

While the comparison above does a great job showing off the three different modes we tested at 60Hz, I also put together a 2x1 comparison of v-sync and G-Sync to make things even more clear. Here you're just looking for the stuttering on the v-sync setup, particularly at the very beginning of the video:

Assassin’s Creed IV

I started out playing Assassin’s Creed IV multiplayer with v-sync off. I used GeForce Experience to predetermine the game quality settings, which ended up being maxed out even on my GeForce GTX 760 test hardware. With v-sync off and the display set to 60Hz, there was just tons of tearing everywhere. In AC4 the tearing was arguably even worse as it seemed to take place in the upper 40% of the display, dangerously close to where my eyes were focused most of the time. Playing with v-sync off was clearly not an option for me.

Next was to enable v-sync with the refresh rate left at 60Hz. Lots of AC4 renders at 60 fps, although in some scenes both outdoors and indoors I saw frame rates drop down into the 40 - 51 fps range. Here with v-sync enabled I started noticing stuttering, especially as I moved the camera around and the difficulty of what was being rendered varied. In some scenes the stuttering was pretty noticeable. I played through a bunch of rounds with v-sync enabled before enabling G-Sync.

I enabled G-Sync, once again leaving the refresh rate at 60Hz and dove back into the game. I was shocked; virtually all stuttering vanished. I had to keep FRAPS running to remind me of areas where I should be seeing stuttering. The combination of fast enough hardware to keep the frame rate in the G-Sync sweet spot of 40 - 60 fps and the G-Sync display itself produced a level of smoothness that I hadn’t seen before. I actually realized that I was playing Assassin’s Creed IV with an Xbox 360 controller literally two feet away from my PS4 and having a substantially better experience. 

Batman: Arkham Origins

Next up on my list was Batman: Arkham Origins. I hadn’t played the past couple of Batman games but they always seemed interesting to me so I was glad to spend some time with this one. Having skipped the previous ones, I obviously didn’t have the repetitive/unoriginal criticisms of the game that some other seemed to have had. Instead I enjoyed its pace and thought it was a decent way to kill some time (or in this case, test a G-Sync display).

Once again I started off with v-sync off with the display set to 60Hz. For a while I didn’t see any tearing, that was until I ended up inside a tower during the second mission of the game. I was panning across a small room and immediately encountered a ridiculous amount of tearing. This was even worse than Assassin’s Creed. What’s interesting about the tearing in Batman was that it really felt more limited in frequency than in AC4’s multiplayer, but when it happened it was substantially worse.

Next up was v-sync on, once again at 60Hz. Here I noticed sharp variations in frame rate resulting in tons of stutter. The stutter was pretty consistent both outdoors (panning across the city) and indoors (while fighting large groups of enemies). I remember seeing the stutter and noting that it was just something I’m used to expecting. Traditionally I’d fight this on a 60Hz panel by lowering quality settings to at least drive for more time at 60 fps. With G-Sync enabled, it turns out I wouldn’t have to.

The improvement to Batman was insane. I kept expecting it to somehow not work, but G-Sync really did smooth out the vast majority of stuttering I encountered in the game - all without touching a single quality setting. You can still see some hiccups, but they are the result of other things (CPU limitations, streaming textures, etc…). That brings up another point about G-Sync: once you remove GPU/display synchronization as a source of stutter, all other visual artifacts become even more obvious. Things like aliasing and texture crawl/shimmer become even more distracting. The good news is you can address those things, often with a faster GPU, which all of the sudden makes the G-Sync play an even smarter one on NVIDIA’s part. Playing with G-Sync enabled raises my expectations for literally all other parts of the visual experience.

Sleeping Dogs

I’ve been wanting to play Sleeping Dogs ever since it came out, and the G-Sync review gave me the opportunity to do just that. I like the premise and the change of scenery compared to the sandbox games I’m used to (read: GTA), and at least thus far I can put up with the not-quite-perfect camera and fairly uninspired driving feel. The bigger story here is that running Sleeping Dogs at max quality settings gave my GTX 760 enough of a workout to really showcase the limits of G-Sync.

With v-sync (60Hz) on I typically saw frame rates around 30 - 45 fps, but there were many situations where the frame rate would drop down to 28 fps. I was really curious to see what the impact of G-Sync was here since below 30 fps G-Sync would repeat frames to maintain a 30Hz refresh on the display itself.

The first thing I noticed after enabling G-Sync is my instantaneous frame rate (according to FRAPS) dropped from 27-28 fps down to 25-26 fps. This is that G-Sync polling overhead I mentioned earlier. Now not only did the frame rate drop, but the display had to start repeating frames, which resulted in a substantially worse experience. The only solution here was to decrease quality settings to get frame rates back up again. I was glad I ran into this situation as it shows that while G-Sync may be a great solution to improve playability, you still need a fast enough GPU to drive the whole thing.

Dota 2 & Starcraft II

The impact of G-Sync can also be reduced at the other end of the spectrum. I tried both Dota 2 and Starcraft II with my GTX 760/G-Sync test system and in both cases I didn’t have a substantially better experience than with v-sync alone. Both games ran well enough on my 1080p testbed to almost always be at 60 fps, which made v-sync and G-Sync interchangeable in terms of experience.

Bioshock Infinite @ 144Hz

Up to this point all of my testing kept the refresh rate stuck at 60Hz. I was curious to see what the impact would be of running everything at 144Hz, so I did just that. This time I turned to Bioshock Infinite, whose integrated benchmark mode is a great test as there’s tons of visible tearing or stuttering depending on whether or not you have v-sync enabled.

Increasing the refresh rate to 144Hz definitely reduced the amount of tearing visible with v-sync disabled. I’d call it a substantial improvement, although not quite perfect. Enabling v-sync at 144Hz got rid of the tearing but still kept a substantial amount of stuttering, particularly at the very beginning of the benchmark loop. Finally, enabling G-Sync fixed almost everything. The G-Sync on scenario was just super smooth with only a few hiccups.

What’s interesting to me about this last situation is if 120/144Hz reduces tearing enough to the point where you’re ok with it, G-Sync may be a solution to a problem you no longer care about. If you’re hyper sensitive to tearing however, there’s still value in G-Sync even at these high refresh rates.

 

Introduction & How it Works Final Words
POST A COMMENT

193 Comments

View All Comments

  • nathanddrews - Thursday, December 12, 2013 - link

    "Can't keep a constant XXfps at XXXXp because our GPUs are too slow? Here, buy this thing that makes your display go slower!"

    I'm a bit torn on G-Sync. On the one hand, it removes some glaring issues that have plagued gamers for years. On the other, it's basically a beard. 15 years ago, you could play a game at insane FPS and refresh rates on CRT. Games were simple with small textures and almost no particle effects. 10 years ago, LCDs became affordable and suddenly everyone was capped at 60Hz and consoles were locked at 30fps or 60fps. Games were more complex, requiring faster hardware, but the slow LCDs made it less noticeable. Now were moving on to LCDs that operate at 144Hz and 4K displays capped at 60Hz. G-Sync is a band-aid. The REAL problem is that GPU makers (NVIDIA/AMD) have not kept up with the pace of resolution requirements and game complexity.

    Like most reviews point out, it all comes down to what you're used to. I'm still using a CRT, 1920x1200@96Hz (sometimes lower, sometimes higher). I have all my games set up to maximize FPS for the target resolution and usually don't use vsync. Screen tearing is not as noticeable due to the high frame rate, instant response time, and the nonexistent lag that comes from CRT tech. G-Sync appeals to me because it would allow me to avoid the most glaring pitfalls of LCD tech and my inability to turn up eye candy to the max without buying all the highest-end hardware. But like I said, this is really just a band-aid and I'm not sure I want to reward this laziness.

    G-Sync hasn't earned my dollar yet. I know my next display purchase will be 4K, but I'm not content with 60Hz LCD. DP 1.3 is on the way, bringing with it 4K and 8K support at significantly higher refresh rates along with 3-D and all that jazz. Will AMD have a response to G-Sync or will they be able to license it for Hawaii 2.0? Will someone develop and open spec that requires minimal hardware to implement for broader adoption? Will GPU makers significantly push performance to make G-Sync obsolete? My CRT hopefully has a couple years left in her, so I hope I can weather the oncoming storm (not a DW reference).
    Reply
  • Yojimbo - Friday, December 13, 2013 - link

    Obviously there's a limit to how good of a video card you can get. This pushes the upper bound on the experience offered by allowing frame rates down to 35fps to be acceptable instead of down to 60fps. As far as cost analysis of buying a faster card for those not in the market for the top tier cards, one must remember that most users will upgrade video cards far more often than monitors. For the life of a monitor, one must continue to purchase more expensive video cards each time one upgrades video cards in order to equal the same experience of a g-sync-enabled monitor with less expensive video cards. Reply
  • hoboville - Thursday, December 12, 2013 - link

    It's kind of a stopgap device for those who don't want to shell out the extra cash for a better/second GPU. ..But even then, the cost of getting a new monitor would seem to offset the cost of a better/second GPU.

    Anand hit the nail on the head when he pointed out that if you are getting a minimum FPS of 60, then vsync should be fine for you. At 1440p+ resolution, even dual GPU will start to encounter slow downs, so it makes sense to invest in Gsync, because minimum frames will be lower. Also, as your hardware ages in relation to the games you play, having Gsync will be good because you'll get a smooth experience without having to buy a new GPU / CPU. Old hardware will retain its relevance longer.
    Reply
  • Mr Perfect - Thursday, December 12, 2013 - link

    Don't forget C!

    C) Have, or are willing to go buy, an nvidia GPU to use with the screen.

    It's always a little disappointing when a manufacturers spends a lot of time and money making some cool new feature, only to have it die because it's proprietary. If this was a part of DirectX or some other industry standard, maybe it would take off.
    Reply
  • kwrzesien - Thursday, December 12, 2013 - link

    They might as well make an entirely new connector and cable. Reply
  • Dribble - Friday, December 13, 2013 - link

    Got to lol there - DirectX is proprietary. From the manufacturers point of view (which is in this case nvidia) if they have spent all that time and money how do they get it back if they just give the tech away for free. Reply
  • Sadrak85 - Thursday, December 12, 2013 - link

    As a person who outgrew 1080p a while back and now has a 3x1 setup, I'm certainly hungry for more features in my monitors, if they're going to continue to cost the same (and they appear to have no intention of having a race to the bottom). Reply
  • Yojimbo - Friday, December 13, 2013 - link

    It may be niche for the next couple years, but it seems like a technology which is destined to eventually become ubiquitous. It's common sense and has real world results. As the industry matures, the holes in the experience will be filled in. Reply
  • Samus - Saturday, December 14, 2013 - link

    For what probably costs $20 in hardware, they can charge a $50-$100 price premium on a high end display for G-Sync. It's definitely niche, but so are video cards costing over $200 and they sell quite well. Reply
  • ArmedandDangerous - Sunday, December 15, 2013 - link

    Well, an FPGA isn't cheap, RAM on it isn't cheap, and it definitely doesn't cost $20 in materials. Reply

Log in

Don't have an account? Sign up now