Power Consumption

Before proceeding to the business end of the review, let us take a look at some power consumption numbers. The G.Skill RAM was set to DDR3 1600 during the measurements. We measured the average power drawn at the wall under different conditions. In the table below, the Blu-ray movie from the optical disk was played using CyberLink PowerDVD 13. The ISOs were mounted using Windows 8's in-built mounting tool. Prime95 v27.9 and Furmark v1.10.6 were used for stress testing. Blu-ray ISO ripping was done using AnyDVD HD v7.2. The Prime95 + Furmark benchmark was run for 1 hour before any measurements were taken. Power consumption numbers for local file playback using various renderer / decode combinations has already been covered in a previous section. The testbed was connected to a Wi-Fi network (and the GbE port was left unconnected) throughout the evaluation. In all cases, a wireless keyboard and mouse were connected to the testbed.

Haswell HTPC Testbed Power Consumption
   
Idle 25.94 W
Sleep 1.38 W
   
Prime95 v27.9 + Furmark 1.10.6 (Full loading of both CPU and GPU) 85.68 W
Prime95 v27.9 (Full loading of CPU only) 73.79 W
   
1080p24 H.264 Blu-ray Playback from ODD 34.5 W
1080p24 VC-1 Blu-ray Playback from ODD 33.21 W
1080i60 VC-1 Blu-ray Playback from ODD 34.37 W
1080p24 VC-1 Blu-ray ISO Streaming from NAS 30.91 W
1080p24 H.264 MVC Blu-ray ISO Streaming from NAS 32.67 W
   
Blu-ray Rip to ISO from ODD 36.41 W

The following screenshots gives an idea of how the integrated GPU and the CPU share the thermal headroom. In the first case, we have full CPU loading and no load on the GPU.

The CPU package power is around 47 W, with the IA cores alone consuming around 37 W. The second screenshot shows the transition from purely full CPU loading to full CPU and GPU loading. The CPU package power rises from 47 W to around 54 W. The GPU is consuming around 18 W, while the IA cores go down to around 27 W.

QuickSync Gets Open Source Support, Regresses in Quality Concluding Remarks
Comments Locked

95 Comments

View All Comments

  • HisDivineOrder - Tuesday, June 4, 2013 - link

    I've heard this song and dance before. It never happens. Plus, limiting people to GDDR5 of pre-determined amounts for a HTPC seems like an exercise in being stupid.
  • Spunjji - Tuesday, June 4, 2013 - link

    Yeah, I'm not buying that rumour. Doesn't make much sense.
  • JDG1980 - Sunday, June 2, 2013 - link

    It's good to see that Intel finally got around to fixing the 23.976 fps bug, which was the biggest show-stopper for using their integrated graphics in a HTPC.

    Regarding MadVR, I'd be interested to see more benchmarks. How good can you run the settings before hitting a wall with GPU utilization? How about on the GT3e - if this ever shows up in an all-in-one Mini-ITX board or NUC, it might be a great choice for HTPCs. Can it handle the good scaling algorithms?

    My own experience is that anti-ringing doesn't add that much GPU load. I recently upgraded to a Radeon HD 7750, and it can handle anti-ringing filters on both luma and chroma with no problem. Chroma upscaling works fine with 3-tap Jinc, and luma also can do this with SD content (even interlaced), but for the most demanding test clip I have (1440x1080 interlaced 60 fields per second) I have to downgrade luma scaling to either Lanczos 3-tap or SoftCubic 80 to avoid dropping frames. (The output destination is a 1080p TV.) I suspect a 7790 or 7850 could handle 3-tap Jinc for both chroma and luma at all resolutions and frame rates up to full HD.

    By the way, I found a weird problem with madVR - when I ran GPU-Z in the background to monitor load, all interlaced content dropped frames. Didn't matter what settings I used. Closing GPU-Z ended the problem. I was still able to monitor GPU load with Microsoft's "Process Explorer" application and this did not cause any problems.

    Regarding 4K output, did you test whether DisplayPort 60 Hz 4K works properly? This might be of interest to some users, especially if the upcoming Asus 4K monitor is released at a reasonable price point. I know people have had to use some odd tricks to get the Sharp 4K monitor to do native resolution at 60 Hz with existing cards.
  • ganeshts - Monday, June 3, 2013 - link

    This is very interesting.. What version of GPU-Z were you using? I will check whether my Jinc / anti-ringing dropped frames were due to GPU-Z running in the background. I did do the initial setup when GPU-Z wasn't active, but obviously the benchmark runs were run with GPU-Z active in the background. Did you see any difference in GPU load between GPU-Z and Process Explorer when playing interlaced content with dropped frames?
  • JDG1980 - Monday, June 3, 2013 - link

    I was using the latest version (0.7.1) of GPU-Z. The strange part is that the GPU load calculation was correct - it was just dropping frames for no reason, it wasn't showing the GPU as being maxed out. For the video card, I was using the newest stable Catalyst driver (13.4, I believe) from AMD's website. The OS is Windows 7 Ultimate (64-bit).

    The only reason I suspected GPU-Z is because after searching a bunch of forums to try to find out why interlaced content (even SD with low madVR settings) wouldn't play properly, I found one other user who said he had to turn off GPU-Z. I cannot say if this is a widespread issue and it's possible it may be limited to certain system configurations or certain GPUs. Still worth trying, though. Thanks for the follow-up!
  • tential - Sunday, June 2, 2013 - link

    I don't understand the H.264 Transcoding Performance chart at all can someone help?

    QuickSync does more FPS at 720p than 1080p. This makes sense.

    The x264 on the Core i3 and core i7 post higher FPS in 1080p but lower in 720p. Why is this?
  • ganeshts - Monday, June 3, 2013 - link

    Maybe the downscaling of the frame from 1080p to 720p sucks up more resources, causing the drop in FPS? Remember that the source is 1080p...
  • tential - Monday, June 3, 2013 - link

    Ok so if I'm downscaling to 720p, why does FPS increase with quicksync, but decrease with the processor?

    It's OPPOSITE directions one increases (quicksync) one decreases (cpu). Wouldn't it be the same both ways?
  • ganeshts - Monday, June 3, 2013 - link

    Downscaling is also hardware accelerated in QS mode. Hardware transcode is faster for 720p decoded frames rather than 1080p decoded frames. The time taken to downscale is much lower than the time taken to transcode the 'extra pixels' in a 1080p version.
  • elian123 - Monday, June 3, 2013 - link

    Ganesh, you mention "The Iris Pro 5200 GPUs are reserved for BGA configurations and unavailable to system builders". Does that imply that there won't be motherboards for sale with the 4770R integrated? Will the 4770R only be available in complete systems?

Log in

Don't have an account? Sign up now