The Launch Lineup: Quad Cores For All

As was the case with the launch of Ivy Bridge last year, Intel is initially launching with their high-end quad core parts, and as the year passes on will progressively rollout dual cores, low voltage parts, and other lower-end parts. That means the bigger notebooks and naturally the performance desktops will arrive first, followed by the ultraportables, Ultrabooks and more affordable desktops. One change however is that Intel will be launching their first BGA (non-socketed) Haswell part right away, the Iris Pro equipped i7-4770R.

Intel 4th Gen Core i7 Desktop Processors
Model Core i7-4770K Core i7-4770 Core i7-4770S Core i7-4770T Core i7-4770R Core i7-4765T
Cores/Threads 4/8 4/8 4/8 4/8 4/8 4/8
CPU Base Freq 3.5 3.4 3.1 2.5 3.2 2.0
Max Turbo 3.9 (Unlocked) 3.9 3.9 3.7 3.9 3.0
Test TDP 84W 84W 65W 45W 65W 35W
HD Graphics 4600 4600 4600 4600 Iris Pro 5200 4600
GPU Max Clock 1250 1200 1200 1200 1300 1200
L3 Cache 8MB 8MB 8MB 8MB 6MB 8MB
DDR3 Support 1333/1600 1333/1600 1333/1600 1333/1600 1333/1600 1333/1600
vPro/TXT/VT-d/SIPP No Yes Yes Yes No Yes
Package LGA-1150 LGA-1150 LGA-1150 LGA-1150 BGA LGA-1150
Price $339 $303 $303 $303 OEM $303

Starting at the top of the product and performance stack, we have the desktop Core i7 parts. All of these CPUs feature Hyper-Threading Technology, so they’re the same quad-core with four virtual cores that we’ve seen since Bloomfield hit the scene. The fastest chip for most purposes remains the K-series 4770K, with its unlocked multiplier and slightly higher base clock speed. Base core clocks as well as maximum Turbo Boost clocks are basically dictated by the TDP, with the 4770S being less likely to maintain maximum turbo most likely, and the 4770T and 4765T giving up quite a bit more in clock speed in order to hit substantially lower power targets.

It’s worth pointing out that the highest “Test TDP” values are up slightly relative to the last generation Ivy Bridge equivalents—84W instead of 77W. Mobile TDPs are a different matter, and as we’ll discuss elsewhere they’re all 2W higher, but that is further offset by the improved idle power consumption Haswell brings.

Nearly all of these are GT2 graphics configurations (20 EUs), so they should be slightly faster than the last generation HD 4000 in graphics workloads. The one exception is the i7-4770R, which is also the only chip that comes in a BGA package. The reasoning here is simple if perhaps flawed: if you want the fastest iGPU configuration (GT3e with 40 EUs and embedded DRAM), you’re probably not going to have a discrete GPU and will most likely be purchasing an OEM desktop. Interestingly, the 4770R also drops the L3 cache down to 6MB, and it’s not clear whether this is due to it having no real benefit (i.e. the eDRAM functions as an even larger L4 cache), or if it’s to reduce power use slightly, or Intel may have a separate die for this particular configuration. Then again, maybe Intel is just busily creating a bit of extra market segmentation.

Not included in the above table are all the common features to the entire Core i7 line: AVX2 instructions, Quick Sync, AES-NI, PCIe 3.0, and Intel Virtualization Technology. As we’ve seen in the past, the K-series parts (and now the R-series as well) omit support for vPro, TXT, VT-d, and SIPP from the list. The 4770K is an enthusiast part with overclocking support, so that makes some sense, but the 4770R doesn’t really have the same qualification. Presumably it’s intended for the consumer market, as businesses are less likely to need the Iris Pro graphics.

Intel 4th Gen Core i5 Desktop Processors
Model Core i5-4670K Core i5-4670 Core i5-4670S Core i5-4670T Core i5-4570 Core i5-4570S
Cores/Threads 4/4 4/4 4/4 4/4 4/4 4/4
CPU Base Freq 3.4 3.4 3.1 2.3 3.2 2.9
Max Turbo 3.8 (Unlocked) 3.8 3.8 3.3 3.6 3.6
Test TDP 84W 84W 65W 45W 84W 65W
HD Graphics 4600 4600 4600 4600 4600 4600
GPU Max Clock 1200 1200 1200 1200 1150 1150
L3 Cache 6MB 6MB 6MB 6MB 6MB 6MB
DDR3 Support 1333/1600 1333/1600 1333/1600 1333/1600 1333/1600 1333/1600
vPro/TXT/VT-d/SIPP No Yes Yes Yes Yes Yes
Package LGA-1150 LGA-1150 LGA-1150 LGA-1150 LGA-1150 LGA-1150
Price $242 $213 $213 $213 $192 $192

The Core i5 lineup basically rehashes the above story, only now without Hyper-Threading. For many users, Core i5 is the sweet spot of price and performance, delivering nearly all the performance of the i7 models at 2/3 the price. There aren’t any Iris or Iris Pro Core i5 desktop parts, at least not yet, and all of the above CPUs are using the GT2 graphics configuration. As above, the K-series part also lacks vPro/TXT/VT-d support but comes with an unlocked multiplier.

Obviously we’re still missing all of the Core i3 parts, which are likely to be dual-core once more, along with some dual-core i5 parts as well. These are probably going to come in another quarter, or at least a month or two out, as there’s no real need for Intel to launch their lower cost parts right now. Similarly, we don’t have any Celeron or Pentium Haswell derivatives launching yet, and judging by the Ivy Bridge rollout I suspect it may be a couple quarters before Intel pushes out ultra-budget Haswell chips. For now, the Ivy Bridge Celeron/Pentium parts are likely as low as Intel wants to go down the food chain for their “big core” architectures.

For those interested in the mobile side of things, we’ve broken out those parts into a separate Pipeline article.

Memory, Platform & Overclocking Die Size and Transistor Count
Comments Locked

210 Comments

View All Comments

  • jeffkibuule - Saturday, June 1, 2013 - link

    I wouldn't say that Pentium 4 was terrible, but their 2004-2006 exercise of continually pumping up clocks was misguided.
  • Nfarce - Saturday, June 1, 2013 - link

    Exactly. As someone who still has my P4 Northwood 3.06GHz (with HT) as a general use PC, I loved it. It served as my main gaming and photo/video editing PC back in the day, and was only replaced with a C2D E8400 overclock build four and a half years ago (which was replaced two years ago with a SB 2500k build). Anyone who says the P4 was terrible is either an AMD fanboy trolling or never had one at the time.
  • bji - Saturday, June 1, 2013 - link

    By any reasonable metric, P4s were pretty bad. Glad you like yours but that's mostly because even back in the P4 days CPUs were already "fast enough" most of the time for most tasks and you probably would have liked a Pentium M or Athlon just as well. P4s started out with very weak performance and were improved a decent amount during the lifetime of the architecture, but they were never spectacular performers vs. the competition and they were always extremely hot and power hungry. Also Rambus memory was a joke.

    More on topic, I'm not surprised that Haswell isn't significantly faster than Ivy Bridge. I said when Sandy Bridge came out that the x86 architecture would never get 50% faster per core than Sandy Bridge. With the combination of nearing the end of the road for process shrinking, the architecture itself already having been optimized to such a degree that any additional significant gains come at an extremely high transistor and R&D cost, the declining of importance of the x86 market as mobile devices become more prominent, and the "already much more than fast enough" aspect of modern CPUs for the vast majority of what they're used for, it's pretty clear that we'll never see significant increases in x86 speed again. There just isn't enough money available in the market to fund the extremely high costs necessary to significantly increase speed in a market where fast enough was achieved years ago.

    I'll stand by my statement of ~2 years ago: x86 will top out at 50% faster than Sandy Bridge per core.
  • nunomoreira10 - Saturday, June 1, 2013 - link

    Maybe not on the comon instruncion set, wich intel has already adress on haxwell, just wait for the software to update to avx2 and you will see how slow sandy bridge is by comparation
  • klmccaughey - Monday, June 3, 2013 - link

    @bji: Totally agree. We are in the halcion days and I can't see the likes of the 4770k getting significantly more powerful any time soon. I believe it will take a huge technology breakthrough in terms of fab materials, along the lines of optical or biological chips. At least 10 years away.

    The corollary to this is that we don't actually really need any more power. We already have the level of "good enough" for the GPU (in gaming terms). In terms of compute power, that is definitely continuing in the concurrency paradigm - which is where it should be, it makes sense. Programmers (like myself) are proceeding along these lines to get more power.

    I think we are at either a pivotal point or a point of divergence again in computer technology. It's very exciting and interesting for me :)
  • jmelgaard - Sunday, June 2, 2013 - link

    Wait what... I must be an AMD fanboy then (although I love Intel and never owned an AMD >.<, lol)...

    Honestly, the P4 platform was terrible in many aspects, and yes I did own one, several actually (2.266, 2.4, 2.8)... But having a Dual Pentium III 1GHz at the time as well made it pretty obvious to me how bad the P4 really was... Granted all those P4 was at lower clocks than yours...

    But nothing is bad not to be good for something, after all intel's after the P4 generation has all been pretty amazing...

    More in the topic though, I am a bit dismayed and disappointed that the power consumption goes up compared to the last generation under load... Great that the idle power goes that much down, but I would rather see the exact same performance as 3rd gen and a huge power reduction... After all, performance wise I am still over satisfied with my i970... I don't feel like i need more juice, so I would rather save some bucks on the electrical bill... Obviously there will be different minds about that part... Just saying what I feel...
  • Donkey2008 - Monday, June 3, 2013 - link

    Weird how you keep saying how "bad" it was in it's time, yet you present no actual facts to back that up. About the only bad thing I ever saw with the P4 were high temps, which any decent HSF fixed.
  • bji - Monday, June 3, 2013 - link

    It was so bad that Intel had to pay vendors not to buy the competitor's chips, an action that they were later sued for and settled to the tune of $1.25 billion.

    The P4 started out very badly; it was very power hungry and had weak performance compared to the competition. Intel was also the only company able to make chip sets for it (can't remember if there were technical or legal reasons behind this or both), and they refused to support any memory but Rambus (for a long time), further hurting their cause by propping up a company that is pretty much the dregs of submarine patent lawsuit filth.

    I can't think of any way in which the P4 was better than its competition of the day except that it had Intel's sleazy business practices behind it, if you consider that "better". It certainly played better in the marketplace, ethics notwithstanding.

    You may have been happy with your P4 because it did what you needed it to do. Awesome. Nobody is saying that the P4 didn't work or that it couldn't actually fulfill the duties of a CPU, we're just saying that compared to its contemporaries, it kinda blew chunks.
  • superjim - Wednesday, June 5, 2013 - link

    I had two P4 chips (2.4 Northwood and 3.0 Prescott) along with many Athlon XP systems (Palomino, Thoroughbred and Barton) and the Athlon's beat the P4s in nearly every metric. Then came the Athlon 64 to solidify AMD's crown. It wasn't until the original Core (Conroe) chips when Intel came screaming back and have held it since.
  • Donkey2008 - Monday, June 3, 2013 - link

    "Anyone who says the P4 was terrible is either an AMD fanboy trolling or never had one at the time. "

    +5

    My Northwood 3GHz was as fast, stable and solid as any CPU I have ever owned. Performed slightly slower than an equivalent A64, but nothing noticable to the human eye. Maybe these people who bag on it have bionic eyes.

Log in

Don't have an account? Sign up now