Haswell GPU Architecture & Iris Pro

In 2010, Intel’s Clarkdale and Arrandale CPUs dropped the GMA (Graphics Media Accelerator) label from its integrated graphics. From that point on, all Intel graphics would be known as Intel HD graphics. With certain versions of Haswell, Intel once again parts ways with its old brand and introduces a new one, this time the change is much more significant.

Intel attempted to simplify the naming confusion with this slide:

While Sandy and Ivy Bridge featured two different GPU implementations (GT1 and GT2), Haswell adds a third (GT3).

Basically it boils down to this. Haswell GT1 is just called Intel HD Graphics, Haswell GT2 is HD 4200/4400/4600. Haswell GT3 at or below 1.1GHz is called HD 5000. Haswell GT3 capable of hitting 1.3GHz is called Iris 5100, and finally Haswell GT3e (GT3 + embedded DRAM) is called Iris Pro 5200.

The fundamental GPU architecture hasn’t changed much between Ivy Bridge and Haswell. There are some enhancements, but for the most part what we’re looking at here is a dramatic increase in the amount of die area allocated for graphics.

All GPU vendors have some fundamental building block they scale up/down to hit various performance/power/price targets. AMD calls theirs a Compute Unit, NVIDIA’s is known as an SMX, and Intel’s is called a sub-slice.

In Haswell, each graphics sub-slice features 10 EUs. Each EU is a dual-issue SIMD machine with two 4-wide vector ALUs:

Low Level Architecture Comparison
  AMD GCN Intel Gen7 Graphics NVIDIA Kepler
Building Block GCN Compute Unit Sub-Slice Kepler SMX
Shader Building Block 16-wide Vector SIMD 2 x 4-wide Vector SIMD 32-wide Vector SIMD
Smallest Implementation 4 SIMDs 10 SIMDs 6 SIMDs
Smallest Implementation (ALUs) 64 80 192

There are limitations as to what can be co-issued down each EU’s pair of pipes. Intel addressed many of the co-issue limitations last generation with Ivy Bridge, but there are still some that remain.

Architecturally, this makes Intel’s Gen7 graphics core a bit odd compared to AMD’s GCN and NVIDIA’s Kepler, both of which feature much wider SIMD arrays without any co-issue requirements. The smallest sub-slice in Haswell however delivers a competitive number of ALUs to AMD and NVIDIA implementations.

Intel had a decent building block with Ivy Bridge, but it chose not to scale it up as far as it would go. With Haswell that changes. In its highest performing configuration, Haswell implements four sub-slices or 40 EUs. Doing the math reveals a very competent looking part on paper:

Peak Theoretical GPU Performance
  Cores/EUs Peak FP ops per Core/EU Max GPU Frequency Peak GFLOPs
Intel Iris Pro 5100/5200 40 16 1300MHz 832 GFLOPS
Intel HD Graphics 5000 40 16 1100MHz 704 GFLOPS
NVIDIA GeForce GT 650M 384 2 900MHz 691.2 GFLOPS
Intel HD Graphics 4600 20 16 1350MHz 432 GFLOPS
Intel HD Graphics 4000 16 16 1150MHz 294.4 GFLOPS
Intel HD Graphics 3000 12 12 1350MHz 194.4 GFLOPS
Intel HD Graphics 2000 6 12 1350MHz 97.2 GFLOPS
Apple A6X 32 8 300MHz 76.8 GFLOPS

In its highest end configuration, Iris has more raw compute power than a GeForce GT 650M - and even more than a GeForce GT 750M. Now we’re comparing across architectures here so this won’t necessarily translate into a performance advantage in games, but the takeaway is that with HD 5000, Iris 5100 and Iris Pro 5200 Intel is finally walking the walk of a GPU company.

Peak theoretical performance falls off steeply as soon as you start looking at the GT2 and GT1 implementations. With 1/4 - 1/2 of the execution resources as the GT3 graphics implementation, and no corresponding increase in frequency to offset the loss the slower parts are substantially less capable. The good news is that Haswell GT2 (HD 4600) is at least more capable than Ivy Bridge GT2 (HD 4000).

Taking a step back and looking at the rest of the theoretical numbers gives us a more well rounded look at Intel’s graphics architectures :

Peak Theoretical GPU Performance
  Peak Pixel Fill Rate Peak Texel Rate Peak Polygon Rate Peak GFLOPs
Intel Iris Pro 5100/5200 10.4 GPixels/s 20.8 GTexels/s 650 MPolys/s 832 GFLOPS
Intel HD Graphics 5000 8.8 GPixels/s 17.6 GTexels/s 550 MPolys/s 704 GFLOPS
NVIDIA GeForce GT 650M 14.4 GPixels/s 28.8 GTexels/s 900 MPolys/s 691.2 GFLOPS
Intel HD Graphics 4600 5.4 GPixels/s 10.8 GTexels/s 675 MPolys/s 432 GFLOPS
AMD Radeon HD 7660D (Desktop Trinity, A10-5800K) 6.4 GPixels/s 19.2 GTexels/s 800 MPolys/s 614 GFLOPS
AMD Radeon HD 7660G (Mobile Trinity, A10-4600M) 3.97 GPixels/s 11.9 GTexels/s 496 MPolys/s 380 GFLOPS

Intel may have more raw compute, but NVIDIA invested more everywhere else in the pipeline. Triangle, texturing and pixel throughput capabilities are all higher on the 650M than on Iris Pro 5200. Compared to AMD's Trinity however, Intel has a big advantage.

The Prelude Crystalwell: Addressing the Memory Bandwidth Problem
Comments Locked

177 Comments

View All Comments

  • arjunp2085 - Sunday, June 2, 2013 - link

    I was under the impression that Richland has been selling on newegg as per a comment on an earlier article..

    I was also wondering since you had done a review on Richland from MSI notebook review i was wondering if you would do a similar comparison..

    http://www.anandtech.com/show/6949/msi-gx70-3be-ri...

    It would be appreciated just placing all the possible matches on the table and a paragraph with selection criteria for the review making the choices dispelling opinion of missing any models
  • GameHopper - Sunday, June 2, 2013 - link

    Why no real power measurements? If it's so important to iris Pro, real world power numbers will be more useful than just listing TDP of the parts
  • shinkueagle - Sunday, June 2, 2013 - link

    The GIANT has awoken! Performance-wise, its amazing! Destroys Trinity! Price-wise.... Well, the area needs some work...
  • trip1ex - Sunday, June 2, 2013 - link

    Yes really disappointed there is no socketed cpu solution that have the best igpu config.

    But I suppose I already have Ivy Bridge i5 for my WMC pc and it is good enough. Still be a nice cheap way to build a secondary small desktop that could also do some light gaming.
  • Lataa - Sunday, June 2, 2013 - link

    dikicha23@gmail.com
  • vFunct - Sunday, June 2, 2013 - link

    Curious why Intel just doesn't go straight for the jugular and release a discrete GPU part on their 22nm process. NVidia/AMD is stuck at 28mm because of their foundries, and it appears Intel's GPU architecture is feature complete and therefore competitive with the discrete parts if they scaled up everything by 4x or 5x.

    NVidia & AMD should be worried about their core high-profit-margins business!
  • jamescox - Sunday, June 2, 2013 - link

    The photo you have on page 4 showing the 2 separate die is strange. The haswell die should not be square. Other photos I have seen show the expected (extremely rectangular) haswell die and a tiny ram chip. I would expect a haswell based chip with double the cpu (8 real cores), and no gpu eventually; this would be almost square. Do you know why your chip does not match other multi-chip module photos online?
  • jamescox - Tuesday, June 4, 2013 - link

    I guess the other photos are haswell plus an integrated chipset in the same module. The photo of the two die is still strange, as neither of these look like a haswell die.
  • IntelUser2000 - Tuesday, June 4, 2013 - link

    That's because that's the picture for GT3e Iris Pro 5200 graphics. The bigger square die is the Haswell CPU+GT3 GPU, while the smaller one is the on-package DRAM.

    The dual core with on-package chipset is even longer than the regular Haswell.
  • tipoo - Wednesday, January 21, 2015 - link

    Yes it should, you're thinking of the ultrabook chips with a controller to the side, not eDRAM. Those ones are rectangular. Look at a haswell MBP 15" teardown to verify.

Log in

Don't have an account? Sign up now