Final Words

Bringing our review to a close, the launch of the Radeon HD 7790 is another precisely targeted launch by AMD. The 7790 is intended to fill AMD’s price and performance gaps between the 7770 and the 7850, and it does this very well, offering 84% of the 7850’s performance – or 130% of the 7770’s performance – for around $30 less than the 7850. In the world of sub-$200 video cards where every $10 matters, this is exactly what AMD needs to fill in their product lineup.

Meanwhile as the first GCN 1.1 GPU, Bonaire doesn’t greet us with any great surprises, and if not for the new PowerTune implementation it would be indistinguishable from Southern Islands (GCN 1.0). With that said AMD already had a strong architecture in GCN 1.0, so even minor changes such as PowerTune and a new GPU configuration serve to make a good architecture better. The new PowerTune will probably take enthusiasts a bit of time to get used to, but ultimately we’re happy to see AMD moving to using just full clock/voltage states and not relying on their clockspeed-only inferred states, as the former is going to offer more power savings. As for AMD’s functional unit layout for Bonaire – 14 CUs, 2 geometry pipelines, and 16 ROPs – it looks to have paid off handsomely for them. They’ve improved performance by quite a bit without having to add too many transistors or a larger memory bus, making it a great way to iterate on GCN midway between new process nodes.

The big question of course is whether 7790 is worth its $149 price tag, and factory overclocked models like the Sapphire worth the $159 price tag. From a pure price/performance perspective, right now things look pretty good for AMD and their partners. Against the rest of the 7000 series it has a very clear niche to fill, which is does so but without being so good as to make the 7850 redundant. Meanwhile against NVIDIA’s GeForce GTX 650 Ti things are still in AMD’s favor but it’s a bit murkier. A 12% performance advantage is distinct, but AMD’s also asking for nearly $20 more than most cheap GTX 650 Tis. At these prices there’s really no concept of a sweet spot since consumers often have fixed budgets, so instead we’ll point out that NVIDIA simply doesn’t have a suitable $150 video card right now; all they can offer are factory overclocked GTX 650 Ti cards.

Speaking of factory overclocked cards, our Sapphire HD 7790 Dual-X OC was exactly what we expected it to be. A 6-7% increase in clockspeeds leads to a 6% performance increase, showing that 7790 achieves the performance scaling necessary to make these cards viable. In this case overclocked cards are a very straightforward proposition: $10-$20 more for 6% more performance and typically a better cooler. This is all rather normal for factory overclocked cards, though we would point out that we have no reason to believe these overclocks aren’t achievable on stock-clocked cards.

Our one concern with the 7790 right now is one of memory size. Adding another 1GB of GDDR5 would definitely have a price impact, and having 2GB of GDDR5 on a 128bit bus would be a bit odd. But on the other hand we now know what the future of PC gaming holds: a lot of ports coming from a console with 8GB of GDDR5 memory. 1GB is going to look very small in a year’s time as those ports start arriving.

Ultimately we’re reminded of a discussion we had with the launch of the GTX 650 Ti last year, when we had the time to look at 2GB vs. 1GB on the 650 Ti and the 7850. Our conclusion at the time was such: “We have reached that point where if you’re going to be spending $150 or more that you shouldn’t be settling for a 1GB card; this is the time where 2GB cards are going to become the minimum for performance gaming video cards.” That conclusion has not changed. The 7790 looks good among the current crop of cards, but the 2GB 7850 is going to be so much more future-proof, at least in as much as a video card can be. At these prices consumer budgets are typically fixed and for good reason, but with 2GB 7850s available at around $180, it’s a very compelling upgrade for the extra $30. In 2013 it’s something worth considering if you want to keep a video card for at least a couple of years.

Power, Temperature, & Noise
Comments Locked

107 Comments

View All Comments

  • GivMe1 - Friday, March 22, 2013 - link

    128bit interface is going to hurt high res textures...
  • CeriseCogburn - Sunday, March 24, 2013 - link

    Oh no it won't ! this is amd man! nothing hurts when it's amd ! amd yes it can !
  • Quizzical - Friday, March 22, 2013 - link

    Your chart shows Radeon HD 6870 FP64 performance as N/A. I think it's 1/20 of FP32 performance, but I'm not sure of that. It definitely can do FP64, as otherwise, it wouldn't be able to claim OpenGL 4 compliance.
  • MrSpadge - Friday, March 22, 2013 - link

    No, it doesn't have any HARDWARE FP64 capabilities. It's always possible to emulate this at slow performance via software, though.
  • Quizzical - Friday, March 22, 2013 - link

    It's basically the same as what the 7770, 7790, and 7850 do, but they're not listed as N/A. The relevant question isn't whether you can do it more slowly, but how much more slowly.
  • MrSpadge - Tuesday, March 26, 2013 - link

    No, it's not the same, the GCN cards have hardware FP64 capabilities.
  • Ryan Smith - Friday, March 22, 2013 - link

    Let's be clear here. 85W is not the TDP. The TDP is higher (likely on the order of 110W or so). However AMD chooses not to publish the TDP for these lower end cards, and instead the TBP.
  • alwayssts - Friday, March 22, 2013 - link

    Yeah, I figure ~85 TBP/105w TDP because that would be smack between 7770/7850 as well as having 20% headroom (which also allows another product to have their TBP between there and 7850's max TDP with it's max tdp above it within 150w....ie ~120-125/150w). IIRC, 80w is the powertune max (TDP) of 7770, 130w for 7850. 85w is the stock operation (TBP) of 7790.

    I really, really dislike how convoluted this power game has become...can you tell?!

    First it was max power. Then it was nvidia stating typical power (so products were within pci-e spec) with AMD still quoting max, which made them look bad. Then we get this 'awesome' product segmentation with 7000 having TBP and max powertune TDPs to separate them, while nvidia quotes TBP and hides the fact the TDP limits for their products exist unless you deduce them from the percentage you can up the boost power.

    AAAAaaaarrrrrghhhhh. I miss when the product you had could do what you wanted it to, ie before software voltage control and multiple states, as for products like this it gives the user less control and the companies a ton to create segmentation. Low-end stock products may have been less-than-stellar back in the day, but with determination you could get something out of it without some marketing stating it should fit x niche so give it y max tdp so it doesn't interfere with the market of z product.
  • CeriseCogburn - Friday, March 22, 2013 - link

    Maybe so you couldn't blow the crap out of it then return it for another one, then another one, as "you saved money" and caused everyone else to pay 25% more since you overclock freaks would blow them up, then LIE and get the freebie replacement, over and over again.

    Maybe they got sick of dealing with scam artist liars... maybe they aren't evil but the end user IS.
  • Spunjji - Friday, March 22, 2013 - link

    Why would the design power be higher than the total board power? :/ You're correct that the figure they're quoting isn't TDP but then you just went and made up a number.

    Here's some actual power consumption measurements of a 7770:
    http://www.techpowerup.com/reviews/HIS/HD_7770_iCo...

    So using Ananad's figures to extrapolate you can expect this thing to be ~90W max, usually lower than that at peak, right about where AMD put it.

Log in

Don't have an account? Sign up now