Brownian Motion

Part of my regular motherboard review testing is to tackle the Brownian motion of particles.  This considers one of two physical scenarios - either gas in a vacuum or a dissolved substance in a fluid, where those particles that are free to move can do so.  These particles can collide with the medium they are in, each other or the boundaries – in general the system can bypass all these by using the diffusion coefficient (average speed of a particle in a medium).  However, the simulation should be probing at least one of them – with the first two situations requiring greater computational complexity than dealing with interactions on a surface.

The movement of these particles is the main computational element of this type of simulation – dealing with either free motion (mean free path in a random direction) or directed motion (applied force on top of free motion).  Motion should start with a method to calculate which direction the particle is to travel in, and then any applied force simulated on top – the initial method is at the whim of random number generators and the choice of algorithm.  In my original article I go through several methods of generating random motion described in the literature, as well as choosing an appropriate random number generator (too many published methods use basic C++ generators that repeat themselves after a few thousand calls).  For simulating, we have various methods:

 - If the simulation has a fixed number of time steps, calculate the random numbers before the simulation and use memory calls in the movement algorithm
 - Calculate the random numbers on the fly during the algorithm if the time steps for each particle can vary (i.e. no need to track a particle after it collides with a surface)

In our Brownian motion benchmark (3D Particle Movement), we test the six different algorithms used in the literature for random direction movement in both single thread and multithreaded mode.  The simulation generates a number of particles, each with its own thread.  The thread iterates the particle through a fixed number of steps, and discards the particle.  When all the threads have finished, the simulation checks the time to see if 10 seconds have passed - if the 10 seconds are not up, it goes through another loop.  Results are then expressed in the form of million particle movements per second for each algorithm, and the total score is the sum of all the algorithms.

This benchmark is wholly memory independent – by generating random numbers on the fly, each thread can keep the position of the particle and the random number values in local cache.

3D Particle Movement Single Threaded

The difference in architectures is most plain to see in our single thread test – both the X5690 and E5-2690 will be applying maximum turbo (3.73 GHz and 3.8 GHz respectively) to similar clocks, meaning the IPC improvements of Sandy Bridge-E give it a 2.5% increase overall despite a mild (1.8%) clock increase.

3D Particle Movement MultiThreaded

The advantages of more cores for this sort of simulation are plain to see, with the E5-2690 (despite a clock speed difference at full load of 2.9 GHz compared to 3.46 GHz) giving a 32% better result than the X5690.

n-Body Simulation

When a series of heavy mass elements are in space, they interact with each other through the force of gravity.  Thus when a star cluster forms, the interaction of every large mass with every other large mass defines the speed at which these elements approach each other.  When dealing with millions and billions of stars on such a large scale, the movement of each of these stars can be simulated through the physical theorems that describe the interactions.

n-Body simulation is a large field of calculation with many different computational methods optimized for speed, memory usage or bus transfer – this is on top of the different algorithms that can be used to represent such a scenario.  Typically one might expect the running time of a simulation be O(n^2) as each particle in the simulation has to interact gravitationally with every other particle, but some computational methods can be used to reduce this as the effect of gravity is inversely proportional to the square of the distance, and thus only the localized area needs to be known.  Other complex solutions deal with general relativity.  I am neither an expert in gravity simulations or relativity, but the solution used today is the full O(n^2) solution.

Part of the available code online for C++ AMP revolves around n-body simulations, as the basis of an n-body simulation maps nicely to parallel processors such as multi-CPU platforms and GPUs.  For this review, I was able to strip out the code from the n-body example provided and run some numbers.  Many thanks to Boby George and Jonathan Emmett from Microsoft for their help.

The code provided detects whether the processor is SSE2 or SSE4 capable, and implements the relative code.  We run a simulation of 10240 particles of equal mass - the output for this code is in terms of GFLOPs, and the result recorded was the peak GFLOPs value.

n-Body Simulation

As the n-body example deals with GFLOPs as a result, the numbers were only ever going to be in favor of the E5-2690s, with a 37% increase over the X5690s.  Core count, IPC and memory speed play a role with large O(n2) simulations like these.  Oddly enough, while HT Off was preferable on the E5-2690s, HT On gives a better result for X5690s.

Grid Solver Benchmarks Compression and Video Benchmarks
Comments Locked

44 Comments

View All Comments

  • jamyryals - Monday, March 4, 2013 - link

    Element is an acceptable term in this case. Anyone confusing a finite element with a chemical element would do well to read up on these types of mathematical models anyways.

    Your other points are well made, and highlight the difficulty in creating meaningful benchmarks.
  • Kevin G - Monday, March 4, 2013 - link

    I agree that the usage of the word element is technically correct. The thing that threw me off more was its usage in conjunction with particle. When I read that paragraph I had to do a double take to get the proper context. My issue here is just a small editorial quibble than a technical issue. :)
  • IanCutress - Tuesday, March 5, 2013 - link

    A majority of the results in the graphs (essentially all the overclocked ones) were on systems out of my control - several users from the Overclock.net HWBot team helped on that one and offered me insight into their setups. Unfortunately I do not have access to a vast array of sockets and systems for comparison.

    The implicit calculations have a fair few division elements per loop, as noted in the previous article where I posted the code (http://www.anandtech.com/show/6533/8) - for each timestep there are >2 divisions per node calculation. Technically the non-CS scientist might not know what is inside the silicon regarding Ivy's better divisor .

    Don't forget the whole point of a review of something like this was to look at the scenario I was in. We went and ordered dual Nehalem systems (E5520s) just because of all the threads. Looking back on it now, I wish we had stuck to single processor systems based on the code we were writing.

    Regarding the built-in Ivy PRNG, as noted in the previous review, the code wasn't hand written for each processor. It was written once and applied over. We didn't get extra time or money to find the best way to simulate something, we just had to simulate.

    Regarding element and particle, I almost use them synonymously in the text. I like to use 'element' to describe the motion of one point in the simulation, but my Chemistry supervisor thought I was being an idiot when we were dealing with chemicals, despite my pleas that element was a CS term. He preferred the term particle as a mid-way point between the two (and also not to confuse the chemistry people reading our papers) and mentally I have equated the two, which is not always the best thing.

    For XVC, I'm not sure why there is such a difference. With HT On, we have 24 threads to do 33 videos, which is one batch of 24 then another of 9 (put your turbos in where appropriate). Without HT, we're slightly faster per core (if we're lucky, or 0 if not), but we have batches of 12, 12 and then 9. Again, apply turbos where appropriate. That's just the program runs - it decides if it wants to commit one thread per video, or multiple threads per video. If it is coding more videos than half the available threads, it does one thread per video - if there is enough threads that each video can get two, it applies two. So the set of 9 videos when HT is on probably gets two threads per video, rather than one thread per video for the 9 videos when HT is off.

    Ian
  • Kevin G - Tuesday, March 5, 2013 - link

    The thing with Ivy Bridge's improved division unit is that it can explain some of the speed up. Glancing at the code, those operations don't seem to be that common that it'd make such a noticeable impact. (The real test would be to compile, disassemble and then count the number of division instructions.) The other thing about Ivy Bridge's divisor is that its performance gains are 'free' in the sense that it doesn't require rewriting or recompiling code to take advantage of. It is an architectural tweak that benefits existing code.

    Upon release, Nehalem was a very good platform and still respectable today. I think the issue is that consumer systems have been catching up. Looking at the charts the only consumer system that's a roughly the same age as the E5520's was an overclocked Phenom II X4's and the dual socket Xeon showed an advantage there. The problem I'm seeing is that the code isn't scaling across multiple sockets and memory controllers very well. Solving that would put performance closer to expectations. If possible, I would suggest enabling memory mirroring across sockets to see if that solves some of the scaling issues. The code wouldn't have to be written to be NUMA aware but usable memory in the system is halved.

    If the NUMA problem is not practical to solve, then going single socket makes sense. Howevever, I would expand the discussion into include RAS. I would not recommend a single highly overclocked system to run scientific simulations as the reliability simply isn't there. One way around that is to get two similarly configured systems and run the simulation twice and compare the results for redunancy. With some of these heavily overclocked systems costing less than half the dual Xeon's price tag and running the code twice as fast, it is worth considering such a mirrored configuration. Other options to consider would be a single 8 core Xeon on socket 2011 or some of the quad core Xeon on socket 1155 and gain ECC memory support to forgo the second system.

    The XVC results can see some improvements in queuing but those benefits should be able to carry over to the non-HT results with a software tweak. (Most software like that can accept such tuning parameters but I'm personally unfamiliar with XVC.) The results are falling outside the realm of reason. It is like say cooling a gas until you realize you're at -20 kelvin. At that point you have to realize something is erroneous. At best HT can double performance and the results are roughly five times faster. Turbo is a factor but that would benefit the non-HT results more as utilization is lower (ie. fewer transistors switching, less heat, more turbo boost).
  • toyotabedzrock - Monday, March 4, 2013 - link

    I looks like Intel forgot about HT on sandy bridge.
  • IanCutress - Tuesday, March 5, 2013 - link

    i5-2500K is a 4C/4T processor.

    Ian
  • TeXWiller - Monday, March 4, 2013 - link

    Ian, have you tried playing with the numa options of the boards?
  • IanCutress - Tuesday, March 5, 2013 - link

    NUMA was enabled in the BIOS, I made sure before I tested :) I also looked at various ways to keep the top turbo in force through all loading, but the limited BIOS options relating to clock speed on server boards are not up to scratch compared to consumer products (as you would expect).

    Ian
  • TeXWiller - Tuesday, March 5, 2013 - link

    I was thinking about the improved bandwith between the processors in E5 family. Some aplications might prefer node interleaved memory instead.
  • alpha754293 - Monday, March 4, 2013 - link

    re: OpenMP vs. MPI
    Multithreaded codes using OpenMP is known to be quite a lot slower than a proper, MPI code. In the testing that I've done, the difference can be as much as 40% because the OpenMP code just simply cannot keep the CPU/FPU units occupied long enough. I've never really dug in deep as to WHY that is (I'm sooo NOT a programmer), but as an end user; that a HUGE difference.

    Secondly, also depending on how you write your MPI code - some of them can be VERY efficient at using multicore/multiprocessors. It depends on the code, the nature and physics of the problem, and a whole bunch of other things. (LS-DYNA for example scales VERY well to the number of processors and/or cores. And my research is showing about an 11-17% benefit with HTT enabled on a 3930K (I don't have 8-core Xeons to play with). :(

    Conversely, I've also seen some MPI codes that don't really quite parallelize nearly quite as well. It SAYS that it's MPI, but it looks more like an OpenMP implementation for the parallelization.

    Part of it also depends on how much data dependency there is - does the information of one depend on the results or the information/data of another (either on spatial or temporal terms)?

    Third - I've had many arguments about this. A single socket, multi-core processor is still a parallel multicore system. Yes, you don't have to deal with NUMA, but unless you have a LOT of traffic going through between your two sockets (something which NO ONE has been able to tell me how to measure so far) - chances are, both either OpenMP OR MPI can scale to single multi-core processor, or multiple multi-core processors. It shouldn't really care (unless you've hard-coded the domain decomposition and the number of "partitions" or "divisions" it makes for the parallelization.)

    I think that the statement/comment that you wrote about how some of the benchmarks or some types of simulations/processes favour a single-CPU setup isn't QUITE exactly accurate only because your single-socket, multi-core CPUs were quite highly overclocked. (I've got my 3930K up to 4.5 GHz, and I just re-enabled C1E/EIST in order to cut my idle power consumption).

    [brb...to be continued]

Log in

Don't have an account? Sign up now