Crysis: Warhead

Up next is our legacy title for 2013, Crysis: Warhead. The stand-alone expansion to 2007’s Crysis, at over 4 years old Crysis: Warhead can still beat most systems down. Crysis was intended to be future-looking as far as performance and visual quality goes, and it has clearly achieved that. We’ve only finally reached the point where single-GPU cards have come out that can hit 60fps at 1920 with 4xAA.

At 2560 we still have a bit of a distance to go before any single-GPU card can crack 60fps. In lieu of that Titan is the winner as expected. Leading the GTX 680 by 54%, this is Titan’s single biggest win over its predecessor, actually exceeding the theoretical performance advantage based on the increase in functional units alone. For some reason GTX 680 never did gain much in the way of performance here versus the GTX 580, and while it’s hard to argue that Titan has reversed that, it has at least corrected some of the problem in order to push more than 50% out.

In the meantime, with GTX 680’s languid performance, this has been a game the latest Radeon cards have regularly cleared. For whatever reason they’re a good match for Crysis, meaning even with all its brawn, Titan can only clear the 7970GE by 21%.

On the other hand, our multi-GPU cards are a mixed bag. Once more Titan loses to both, but the GTX 690 only leads by 15% thanks to GK104’s aforementioned weak Crysis performance. Meanwhile the 7990 takes a larger lead at 33%.

I’d also note that we’ve thrown in a “bonus round” here just to see when Crysis will be playable at 1080p with its highest settings and with 4x SSAA for that picture-perfect experience. As it stands AMD multi-GPU cards can already cross 60fps, but for everything else we’re probably a generation off yet before Crysis is completely and utterly conquered.

Moving on, we once again have minimum framerates for Crysis.

When it comes to Titan, the relative improvement in minimum framerates over GTX 680 is nothing short of obscene. Whatever it was that was holding back GTX 680 is clearly having a hard time slowing down Titan, leading to Titan offering 71% better minimum framerates. There’s clearly much more going on here than just an increase in function units.

Meanwhile, though Titan’s gains here over the 7970GE aren’t quite as high as they were with the GTX 680, the lead over the 7970GE still grows a bit to 26%. As for our mutli-GPU cards, this appears to be a case where SLI is struggling; the GTX 690 is barely faster than Titan here. Though at 31% faster than Titan, the 7990 doesn’t seem to be faltering much.

Sleeping Dogs Far Cry 3
Comments Locked

337 Comments

View All Comments

  • PEJUman - Thursday, February 21, 2013 - link

    Made me wonder:
    7970 - 4.3B trans. - $500 - OK compute, 100% gaming perf.
    680 - 3.5B trans. _ $500 - sucky compute, 100% gaming perf.
    Titan - 7.1B trans - $1000 - OK compute, ~140% gaming perf.

    1. Does compute capability really takes that much more transistors to build? as in 2x trans. only yield ~140% improvement on gaming.
    I think this was a conscious decision by nVidia to focus on compute and the required profit margin to sustain R&D.

    2. despite the die size shrink, I'm guessing it would be harder to have functional silicon as the process shrinks. i.e. finding 100mm^2 of functional silicon @ 40nm is easier than @28nm, from the standpoint that more transistors are packed to the same area. Which I think why they have 15SMXs designed.
    Thus it'd be more expensive for nVidia to build same area at 28 vs. 40 nm... at least until the process matures, but at 7B I doubt it will ever be attainable.

    3. The AMD statement on no updates to 7970 essentially sealed the $1000 price for titan. I would bet if AMD announced 8970, Titan would be priced at $700 today, with 3GB memory.
  • JarredWalton - Thursday, February 21, 2013 - link

    Luxury GPU is no more silly than Extreme CPUs that cost $1000 each. And yet, Intel continues to sell those, and what's more the performance offered by Titan is a far better deal than the performance offered by a $1000 CPU vs. a $500 CPU. Then there's the Tesla argument: it's a $3500 card for the K20 and this is less than a third that price, with the only drawbacks being no ECC and no scalability beyond three cards. For the Quadro crowd, this might be a bargain at $1000 (though I suspect Titan won't get the enhanced Quadro drivers, so it's mostly a compute Tesla alternative).
  • chizow - Friday, February 22, 2013 - link

    The problem with this analogy, which I'm sure was floated around Nvidia's Marketing board room in formulating the plan for Titan, is that Intel offers viable alternative SKUs based on the same ASIC. Sure there are the few who will buy the Intel EE CPU (3970K) for $1K, but the overwhelming majority in that high-end market would rather opt for the $500 option (3930K) or $300 option (3820).

    Extend this to the GPU market and you see Nvidia clearly withheld GK100/GK110 as the flagship part for over a year, and instead of offering a viable SKU for traditional high-end market segments based on this ASIC, they created a NEW ultra-premium market. That's the ONLY reason Titan looks better compared to GK104 than Intel's $1K and $500 options, because Nvidia's offerings are truly different classes while Intel's differences are minor binning and multiplier locked parts with a bigger black box.
  • mlambert890 - Saturday, February 23, 2013 - link

    The analogy is fine, you're just choosing to not see it.

    Everything you said about Intel EE vs standard directly applies here.

    You are assuming that the Intel EE parts are nothing more than a marketing ploy, which is wrong, while at the same time assuming that the Titan is orders of magnitude beyond the 680 which is also wrong.

    You're seeing it from the point of view of someone who buys the cheapest Intel CPU, overclocks it to the point of melting, and then feels they have a solution "just as good if not better" than the Intel EE.

    Because the Titan has unlocked stream procs that the 680 lacks, and there is no way to "overclock" your way around missing SPs, you feel that NVidia has committed some great sin.

    The reality is that the EE procs give out of box performance that is superior to out of box performance of the lesser SKUs by a small, but appreciable, margin. In addition, they are unlocked, and come from a better bin, which means they will overclock *even better* than the lesser SKUs. Budget buyers never want to admit this, but it is reality in most cases. Yes you can get a "lucky part" from the lesser SKU that achieves a 100% overclock, but this is an anomaly. Most who criticize the EE SKUs have never even come close to owning one.

    Similarly, the Titan offers a small, but appreciable, margin of performance over the 680. It allows you to wait longer before going SLI. The only difference is you don't get the "roll of the dice" shot at a 680 that *might* be able to appear to match a Titan since the SP's arent there.

    The analogy is fine, it's just that biased perspective prevents some from seeing it.
  • chizow - Saturday, February 23, 2013 - link

    Well you obviously have trouble comprehending analogies if you think 3.6B difference in transistors and ~40% difference in performance is analogous to 3MB L3 cache, an unlocked multiplier and 5% difference in performance.

    But I guess that's the only way you could draw such an asinine parallel as this:

    "Similarly, the Titan offers a small, but appreciable, margin of performance over the 680."

    It's the only way your ridiculous analogy to Intel's EE could possibly hold true, when in reality, it couldn't be further from the truth. Titan holds a huge advantage over GTX 680, but that's expected, its a completely different class of GPU whereas the 3930K and 3960X are cut from the exact same wafer.
  • CeriseCogburn - Sunday, February 24, 2013 - link

    There was no manufacturing capacity you IDIOT LIAR.
    The 680 came out 6 months late, and amd BARELY had 79xx's on the shelves till a day before that.

    Articles were everywhere pointing out nVidia did not have reserve die space as the crunch was extreme, and the ONLY factory was in the process of doing a multi-billion dollar build out to try to keep up with bare minimum demand.

    Now we've got a giant GPU core with perhaps 100 attempted dies per wafer, with a not high yield, YET YOU'RE A LIAR NONETHELESS.
  • chizow - Sunday, February 24, 2013 - link

    It has nothing to do with manufacturing capacity, it had everything to do with 7970's lackluster performance and high price tag.

    GTX 680 was only late (by 3, not 6 months) because Nvidia was too busy re-formulating their high-end strategy after seeing 7970 outperform GTX 580 by only 15-20% but asking 10% higher price. Horrible price:performance metric for a new generation GPU on a new process node.

    This gave Nvidia the opportunity to:

    1) Position mid-range ASIC GK104 as flagship GTX 680 and still beat the 7970.
    2) Push back and most importantly, re-spin GK100 and refine it to be GK110.
    3) Screw their long-time customers and AMD/AMD fans in the process.
    4) Profit.

    So instead of launching and mass-producing their flagship ASIC first (GK100) as they've done in every single previous generation and product launch, they shifted their production allocation at TSMC to their mid-range ASIC, GK104 instead.

    Once GK110 was ready, they've had no problem churning them out, even the mfg date of these TITAN prove this point as week 31 chips are somewhere in the July-August time frame. They were able to deliver some 19,000 K20X units to ORNL for the real TITAN in October 2012. Coupled with the fact they're using ASICs with the same number of functional units for GTX Titanic, it goes to show yields are pretty good.

    But the real conclusion to be drawn for this is that other SKUs based on GK110 are coming. There's no way GK110 wafer yields are anywhere close to 100% for 15 SMX ASICs. I fully expect a reduced SMX unit, maybe 13 with 2304SP as originally rumored show it's face as the GTX 780 with a bunch of GK114 refreshes behind it to fill out the line-up.

    The sooner people stop overpaying for TITAN, the sooner we'll see the GTX 700 series, imo, but with no new AMD GPUs on the horizon we may be waiting awhile.
  • CeriseCogburn - Sunday, February 24, 2013 - link

    Chizow I didn't read your stupid long post except for your stupid 1st line.

    you're a brainwashed lying sack of idiocy, so maybe i'll waste my time reading your idiotic lies, and maybe not, since your first line is the big fat frikkin LIE you HAVE TO BELIEVE that you made up in your frikkin head, in order to take your absolutely FALSE STANCE for the past frikkin nearly year now.
  • chizow - Monday, February 25, 2013 - link

    You should read it, you might learn something.

    Until then stfd, stfu, and gfy.
  • CeriseCogburn - Sunday, February 24, 2013 - link

    Dear Jeff, a GPU that costs $400 dollars is a luxury GPU.

    I'm not certain you disagree with that, I'd just like to point out the brainless idiots pretending $1000 for a GPU is luxury and $250 is not are clueless.

Log in

Don't have an account? Sign up now