When it comes to memory overclocking, there are several ways to approach the issue.  Typically memory overclocking is rarely required - only those attempting to run benchmarks need worry about pushing the memory to its uppermost limits.  It also depends highly on the memory kits being used - memory is similar to processors in the fact that the ICs are binned to a rated speed.  The higher the bin, the better the speed - however if there is a demand for lower speed memory, then the higher bin parts may be declocked to increase supply of the lower clocked component.  Similarly, for the high end frequency kits, less than 1% of all ICs tested may actually hit the speed of the kit, hence the price for these kits increase exponentially.

With this in mind, there are several ways a user can approach overclocking memory.  The art of overclocking memory can be as complex or as simple as the user would like - typically the dark side of memory overclocking requires deep in-depth knowledge of how memory works at a fundamental level.  For the purposes of this review, we are taking overclocking in three different scenarios:

a) From XMP, adjust Command Rate from 2T to 1T
b) From XMP, increase Memory Speed strap (e.g. 1333 MHz -> 1400 -> 1600)
c) From XMP, decrease main sub-timings (e.g. 10-12-12 to 9-11-11 to 8-10-10)

There is plenty of scope to overclock beyond this, such as adjusting voltages or the voltage of the memory controller.  As long as a user is confident with adjusting these settings, then there is a good chance that the results here will be surpassed.   There is also the fact that individual sticks of memory may perform better than the rest of the kit, or that one of the modules could be a complete dud and hold the rest of the kit back.  For the purpose of this review we are seeing if the memory out of the box, and the performance of the kit as a whole, will work faster at the rated voltage.

In order to ensure that the kit is stable at the new speed, we run the Linpack test within OCCT for five minutes.  This is a small but thorough test, and we understand that users may wish to stability test for longer to reassure themselves of a longer element of stability.  However for the purposes of throughput, a five minute test will catch immediate errors from the overclocking of the memory.

With this in mind, the kits performed as follows:

F3-1333C9Q-16GAO - rated at DDR3-1333 9-9-9-24 2T 1.50 volts

Adjusting from 2T to 1T: Passes Linpack
Adjusting from 1333 to 1400: Passes Linpack
Adjusting from 1333 to 1600: No Boot
Adjusting from 9-9-9 to 8-8-8: Linpack Error

F3-12800CL9Q-16GBXL - rated at DDR3-1600 9-9-9-24 2T 1.50 volts

Adjusting from 2T to 1T: Passed Linpack
Adjusting from 1666 to 1800: No boot
Adjusting from 9-9-9 to 8-8-8: No boot

F3-14900CL9Q-16GBSR - rated at DDR3-1866 9-10-9-28 2T 1.50 volts

Adjusting from 2T to 1T: Passes Linpack
Adjusting from 1866 to 2000: No boot
Adjusting from 9-10-9 to 8-9-8: No boot

F3-17000CL9Q-16GBZH - rated at DDR3-2133 9-11-10-28 2T 1.65 volts

Adjusting from 2T to 1T: Passes Linpack
Adjusting from 2133 to 2200: Passes Linpack
Adjusting from 2133 to 2400: No Boot
Adjusting from 9-11-10 to 9-9-9: No boot
Adjusting from 9-11-10 to 8-11-10: No boot

F3-2400C10Q-16GTX - rated at DDR3-2400 10-12-12-31 2T 1.65 volts

Adjusting from 2T to 1T: Passes Linpack
Adjusting from 2400 to 2600: No boot
Adjusting from 10-12-12 to 9-11-11: No boot

Rendering Conclusions
Comments Locked

114 Comments

View All Comments

  • just4U - Saturday, October 20, 2012 - link

    Peaunut we are not talking 300-500 bucks here.. this is a 20-30 dollar premium which is nothing in comparison to what ram used to cost and how much more premium ram was as well.

    If your on a tight budget get 8Gigs of regular ram which is twice the amount of ram you likely need anyway.
  • Tech-Curious - Monday, November 5, 2012 - link

    Thing is, these tests are for integrated graphics, unless I'm misreading something (AFAICT, the discrete card was only used for PhysX support; if I misread there then I apologize).

    Off the top of my head, there are basically three scenarios in which you're likely to want an IGP:

    1) You're building an HTPC, in which case you prioritize (lack of) noise and (lack of) heat over graphics' power. If all you want to run are movies, then the IGP should be adequate regardless of the speed of your memory -- and if you want to play games, no amount of memory is going to turn an Intel IGP into an adequate performer on your average TV set these days. (Better to grab an AMD APU or just give up the ghost and grab a moderate-performance GPU.)

    2) You're looking to run a laptop. But the memory reviewed in this article doesn't apply to laptops anyway.

    3) You're on a tight budget.

    So at best, we're talking about a fraction of a sliver of a tiny niche in the market, when we discuss the people who might be interested in wringing every last ounce of performance out of an IGP by installing high-priced desktop memory. Sure, the difference in absolute cost between the cheapest and the most expensive RAM here isn't going to make or break most people -- but people generally don't like to incur unnecessary costs either.

    And people who are on a budget? They can save $80, just based on the numbers in the article, without making any significant performance sacrifice. That's real money, computer-component-wise.
  • tynopik - Thursday, October 18, 2012 - link

    "I remember buying my first memory kit ever. It was a 4GB kit"

    makes you feel old

    my first was 8MB
  • DanNeely - Thursday, October 18, 2012 - link

    My first computer only had 16k.
  • Mitch101 - Thursday, October 18, 2012 - link

    VIC-20
    3583 bytes free
  • jamyryals - Thursday, October 18, 2012 - link

    wow :)
  • just4U - Saturday, October 20, 2012 - link

    The first computer i bough was a tandy 1000. I got them to put in 4 megs of ram.. at 50 bucks per meg.
  • GotThumbs - Thursday, October 18, 2012 - link

    Same here.

    I had purchased a used AT Intel 486DX 33Mhz powered system and upgraded it to 16mb around 1989. Overclocking it was done using jumpers on the motherboard. Heck, in HS I was a student assistant my senior year and recorded everyone's grades on a cassette tape drive using a Tandy (TS-80 I believe). It blows my mind thinking about how things have changed. There's more power/ram in a Raspberry PI than my first computer.

    Best wishes for computing in the next ~30 years.
  • andrewaggb - Thursday, October 18, 2012 - link

    Agreed, my first computer I owned personally was a 486 slc 33 (cyrix....) and I had a couple 1mb memory sticks, can't remember if those were called sims or something else. We had an apple 2+, trs 80, commodore 64, and ibm pc jr in the early-mid 80's but those were my dads :-), and some 286 that I can't remember the brand of.

    Just thinking about the e6400 as a first pc amuses me :-), that's still usable, and actually is when most of the computer fun started to die in my books. My current pc's are running phenom II 965, i5 2500k, i7 620m, i5 750, i7 720qm and I just have little motivation to upgrade anything ever.

    Haswell is the first chip in a long time that I'm excited about. Everything else has been meh. And AMD... I had an amd 486-120,K6-200,K6-2 300,athlon xp 1800,2500, athlon 64 3200, athlon 64 x2 4800, 5600, phenom II 945,phenom x3, and my current 965 and a c-50 e netbook. man hard to believe all the computers I've had :-) Anyways, amd has nothing I want anymore, except cheap multicore cpus for running x264 all day.
  • IanCutress - Thursday, October 18, 2012 - link

    E6400 wasn't the first PC... just the first processor I actually bought memory for. The rest were pre-built or hand-me-downs. :) I actually just took the same motherboard/chip out of my brother's computer (he has had it for a few years, with that memory) and bumped him up to Sandy Bridge. I'm still 27, and the E6400 system was new for me when I was around 21 or so. Since then I've got a Masters and a PhD - time flies when you're having fun!

    Ian

Log in

Don't have an account? Sign up now