When I first started writing about x86 CPUs Intel was on the verge of entering the enterprise space with its processors. At the time, Xeon was a new brand, unproven in the market. But it highlighted a key change in Intel's strategy for dominance: leverage consumer microprocessor sales to help support your fabs while making huge margins on lower volume, enterprise parts. In other words, get your volume from the mainstream but make your money in the enterprise. Intel managed to double dip and make money on both ends, it just made substantially more in servers.

Today Intel's magic formula is being threatened. Within 8 years many expect all mainstream computing to move to smartphones, or whatever other ultra portable form factor computing device we're carrying around at that point. To put it in perspective, you'll be able to get something faster than an Ivy Bridge Ultrabook or MacBook Air, in something the size of your smartphone, in fewer than 8 years. The problem from Intel's perspective is that it has no foothold in the smartphone market. Although Medfield is finally shipping, the vast majority of smartphones sold feature ARM based SoCs. If all mainstream client computing moves to smartphones, and Intel doesn't take a dominant portion of the smartphone market, it will be left in the difficult position of having to support fabs that no longer run at the same capacity levels they once did. Without the volume it would become difficult to continue to support the fab business. And without the mainstream volume driving the fabs it would be difficult to continue to support the enterprise business. Intel wouldn't go away, but Wall Street wouldn't be happy. There's a good reason investors have been reaching out to any and everyone to try and get a handle on what is going to happen in the Intel v ARM race.

To make matters worse, there's trouble in paradise. When Apple dropped PowerPC for Intel's architectures back in 2005 I thought the move made tremendous sense. Intel needed a partner that was willing to push the envelope rather than remain content with the status quo. The results of that partnership have been tremendous for both parties. Apple moved aggressively into ultraportables with the MacBook Air, aided by Intel accelerating its small form factor chip packaging roadmap and delivering specially binned low leakage parts. On the flip side, Intel had a very important customer that pushed it to do much better in the graphics department. If you think the current crop of Intel processor graphics aren't enough, you should've seen what Intel originally planned to bring to market prior to receiving feedback from Apple and others. What once was the perfect relationship, is now on rocky ground.

The A6 SoC in Apple's iPhone 5 features the company's first internally designed CPU core. When one of your best customers is dabbling in building CPUs of its own, there's reason to worry. In fact, Apple already makes the bulk of its revenues from ARM based devices. In many ways Apple has been a leading indicator for where the rest of the PC industry is going (shipping SSDs by default, moving to ultra portables as mainstream computers, etc...). There's even more reason to worry if the post-Steve Apple/Intel relationship has fallen on tough times. While I don't share Charlie's view of Apple dropping Intel as being a done deal, I know there's truth behind his words. Intel's Ultrabook push, the close partnership with Acer and working closely with other, non-Apple OEMs is all very deliberate. Intel is always afraid of customers getting too powerful and with Apple, the words too powerful don't even begin to describe it.

What does all of this have to do with Haswell? As I mentioned earlier, Intel has an ARM problem and Apple plays a major role in that ARM problem. Atom was originally developed not to deal with ARM but to usher in a new type of ultra mobile device. That obviously didn't happen. UMPCs failed, netbooks were a temporary distraction (albeit profitable for Intel) and a new generation of smartphones and tablets became the new face of mobile computing. While Atom will continue to play in the ultra mobile space, Haswell marks the beginning of something new. Rather than send its second string player into battle, Intel is starting to prep its star for ultra mobile work.

Haswell is so much more than just another new microprocessor architecture from Intel. For years Intel has enjoyed a wonderful position in the market. With its long term viability threatened, Haswell is the first step of a long term solution to the ARM problem. While Atom was the first "fast-enough" x86 micro-architecture from Intel, Haswell takes a different approach to the problem. Rather than working from the bottom up, Haswell is Intel's attempt to take its best micro-architecture and drive power as low as possible.

Platform Retargeting & Platform Power
Comments Locked

245 Comments

View All Comments

  • kukreknecmi - Friday, October 5, 2012 - link

    I hope i know it right. L3 on SB/IB doest used by GPU. L3 still servers as cache on system via memory controller. If GPU nneds to acess to memory, it sends request to memory controller. L3 is not directly accessable to GPU as a texture cache etc.On IB, they added a 512k cache which is seperated to half, 256k of it is used as texture system as backfeeding and other 256k half is used for other things.

    Article implies that L3 cache on IB is used as a texture buffer like on ordinary graphic cards. Only on Haswell L3 cache will be accessable and can be used as a some kind of GPU specific buffer.
  • Kevin G - Friday, October 5, 2012 - link

    The confusing thing is that consumer Ivy Bridge parts have a L3 cache just for the GPU which is separate memory than the L3 cache that the CPU uses. The Ivy Bridge GPU's can use the CPU's L3 cache as the GPU's L4 cache to a degree.

    To confuse things further, the CPU side really has four levels of cache too. There is the small 1.5 KB micro-uop cache for instructions which comes before the 32 KB L1 instruction cache.
  • mayankleoboy1 - Friday, October 5, 2012 - link

    From the article, its not very clear : Which platform (DT, Mobile, ultra mobile) will have the integrated voltage regulators/controllers ?
  • Ryan Smith - Friday, October 5, 2012 - link

    Ultra Mobile.
  • Anand Lal Shimpi - Friday, October 5, 2012 - link

    It's not clear how much of the VR circuitry gets integrated into Haswell or necessarily which parts will have it and which ones won't. Ultra mobile is a shoe in, but I've even heard of desktop parts getting it as well. We'll have to wait and see.
  • DanNeely - Friday, October 5, 2012 - link

    Rats. Reading the article I was hoping that Intel had decided to only bake the VRMs into their ultra-mobile parts. Better VRMs are an important factor in high end OCing; with desktop boards not cramped for space I really hope Intel keeps them off the package.
  • Peanutsrevenge - Friday, October 5, 2012 - link

    Seconded.

    However, I wonder whether the VRMs on high end mobos will still be an option, where the on package VRMs will simply extend the capabilities?

    But given Intels recent distaste for overclocking, it wouldn't suprise me if we'll soon see CPUs completely locked from overclocking completely or only on E series, high profit chips.
  • Homeles - Saturday, October 6, 2012 - link

    "However, I wonder whether the VRMs on high end mobos will still be an option, where the on package VRMs will simply extend the capabilities?"

    Bingo.
  • Homeles - Saturday, October 6, 2012 - link

    Low end motherboards won't need them. High end overclocking boards will have them in addition to the ones on package.
  • tuxRoller - Friday, October 5, 2012 - link

    Using lvds reclocking you can reduce idle screen induced wakeups to 30 (ditto for the memory controller if the cpu supports self refresh for the sram ).
    eDP may allow even less.

Log in

Don't have an account? Sign up now