Apple's Swift: Pipeline Depth & Memory Latency

Section by Anand Shimpi

For the first time since the iPhone's introduction in 2007, Apple is shipping a smartphone with a CPU clock frequency greater than 1GHz. The Cortex A8 in the iPhone 3GS hit 600MHz, while the iPhone 4 took it to 800MHz. With the iPhone 4S, Apple chose to maintain the same 800MHz operating frequency as it moved to dual-Cortex A9s. Staying true to its namesake, Swift runs at a maximum frequency of 1.3GHz as implemented in the iPhone 5's A6 SoC. Note that it's quite likely the 4th generation iPad will implement an even higher clocked version (1.5GHz being an obvious target).

Clock speed alone doesn't tell us everything we need to know about performance. Deeper pipelines can easily boost clock speed but come with steep penalties for mispredicted branches. ARM's Cortex A8 featured a 13 stage pipeline, while the Cortex A9 moved down to only 8 stages while maintining similar clock speeds. Reducing pipeline depth without sacrificing clock speed contributed greatly to the Cortex A9's tangible increase in performance. The Cortex A15 moves to a fairly deep 15 stage pipeline, while Krait is a bit more conservative at 11 stages. Intel's Atom has the deepest pipeline (ironically enough) at 16 stages.

To find out where Swift falls in all of this I wrote two different codepaths. The first featured an easily predictable branch that should almost always be taken. The second codepath featured a fairly unpredictable branch. Branch predictors work by looking at branch history - branches with predictable history should be, well, easy to predict while the opposite is true for branches with a more varied past. This time I measured latency in clocks for the main code loop:

Branch Prediction Code
  Apple A3 (Cortex A8 @ 600MHz Apple A5 (2 x Cortex A9 @ 800MHz Apple A6 (2 x Swift @ 1300MHz
Easy Branch 14 clocks 9 clocks 12 clocks
Hard Branch 70 clocks 48 clocks 73 clocks

The hard branch involves more compares and some division (I'm basically branching on odd vs. even values of an incremented variable) so the loop takes much longer to execute, but note the dramatic increase in cycle count between the Cortex A9 and Swift/Cortex A8. If I'm understanding this data correctly it looks like the mispredict penalty for Swift is around 50% longer than for ARM's Cortex A9, and very close to the Cortex A8. Based on this data I would peg Swift's pipeline depth at around 12 stages, very similar to Qualcomm's Krait and just shy of ARM's Cortex A8.

Note that despite the significant increase in pipeline depth Apple appears to have been able to keep IPC, at worst, constant (remember back to our scaled Geekbench scores - Swift never lost to a 1.3GHz Cortex A9). The obvious explanation there is a significant improvement in branch prediction accuracy, which any good chip designer would focus on when increasing pipeline depth like this. Very good work on Apple's part.

The remaining aspect of Swift that we have yet to quantify is memory latency. From our iPhone 5 performance preview we already know there's a tremendous increase in memory bandwidth to the CPU cores, but as the external memory interface remains at 64-bits wide all of the changes must be internal to the cache and memory controllers. I went back to Nirdhar's iOS test vehicle and wrote some new code, this time to access a large data array whose size I could vary. I created an array of a finite size and added numbers stored in the array. I increased the array size and measured the relationship between array size and code latency. With enough data points I should get a good idea of cache and memory latency for Swift compared to Apple's implementation of the Cortex A8 and A9.

At relatively small data structure sizes Swift appears to be a bit quicker than the Cortex A8/A9, but there's near convergence around 4 - 16KB. Take a look at what happens once we grow beyond the 32KB L1 data cache of these chips. Swift manages around half the latency for running this code as the Cortex A9 (the Cortex A8 has a 256KB L2 cache so its latency shoots up much sooner). Even at very large array sizes Swift's latency is improved substantially. Note that this data is substantiated by all of the other iOS memory benchmarks we've seen. A quick look at Geekbench's memory and stream tests show huge improvements in bandwidth utilization:

Couple the dedicated load/store port with a much lower latency memory subsystem and you get 2.5 - 3.2x the memory performance of the iPhone 4S. It's the changes to the memory subsystem that really enable Swift's performance.

 

Apple's Swift: Visualized Six Generations of iPhones: Performance Compared
Comments Locked

276 Comments

View All Comments

  • grkhetan - Wednesday, October 17, 2012 - link

    You dont "need iTunes" per se to use the iPhone any more. However, it is required if you sync music. However, I use iTunes Match -- so I dont need to use iTunes sync for anything... However I need to use iTunes to upload my music to the iTunes Match servers but thats it. I am happy to say with iCloud and iTunes Match -- "syncing" my iPhone is something that is no longer required at all.
  • Touche - Wednesday, October 17, 2012 - link

    One doesn't need iTunes, except one does...however, you don't, however you need it...but happily, you don't require it at all, except you do.

    Hmm...
  • grkhetan - Wednesday, October 17, 2012 - link

    Touche, iTunes is not required to use the phone if you dont need music/videos using the default player. (You could play them from streaming services like Spotify/Pandora, etc or store it in dropbox).

    But if you need to play music using the default music player -- you need to use iTunes to sync the music over. BUT if you use iTunes Match, then you dont need to use "iTunes sync", but you need iTunes to upload the music to iTunes Match servers. This itself is not painful at all in my opinion -- the main burden with iTunes was the "sync"
  • phillyry - Sunday, October 21, 2012 - link

    I'm sorry but I'm going to have to agree with Touché here.

    Please don't backtrack/double back to justify the fact that you do in fact need iTunes on an iPhone and need to sync it. Wired or wireless it's still a sync - it just goes through iCloud when done wirelessly.

    Lets not confound the matters of whether the use of an iPhone is pleasant or not with whether you need to use the generally unpleasant iTunes sync. Apple's lockdown on sync methods sucks for the users freedom of access to their own device but, despite that, the device is still great to use.
  • ThreeDee912 - Wednesday, October 17, 2012 - link

    Basically, if you want to put your own media on your iPhone, you'll need iTunes to sync or upload with iTunes Match.

    You can do everything else on the phone itself.
  • darkcrayon - Wednesday, October 17, 2012 - link

    No, you don't need iTunes to put media on your iPhone. You do need it to put media in the stock Music or Videos app. If you don't want to use those there are many apps that let you supply your own music via wifi copy to the iPhone or by downloading them directly from the web if you have such a source.

    I don't have any issue with iTunes though so I just use that.
  • steven75 - Wednesday, October 17, 2012 - link

    Funny, I know people who have switched the other way and are hugely relieved to be free of the bloatware, nervous anticipation of "will my phone ever get updated?", and crappy plastic hardware.

    In summary, anecdotes are fun and enjoy what ya got.
  • KPOM - Thursday, October 18, 2012 - link

    Don't let the door hit you on the way out. Also, don't complain when Samsung decides your phone is "too old" for the latest update. I resisted the iPhone as long as I could. I even had a Nexus One for over 18 months. But once Google decided that its former flagship, which was released 6 months after the iPhone 3GS, was 'too old" to get any OS after Gingerbread (which it got about 3 months after Gingerbread devices came out) I decided I could no longer put up with Google's tactics. Plus, it's nice no longer giving away all my personal information to Google just for the privilege of using their bloated copycat OS.
  • Spunjji - Friday, October 19, 2012 - link

    No. Now you're giving it to Apple for the privelege of using their bloated copycat OS instead.

    Seriously, I was following you write up until your final crock-of-shit statement. All smartphone operating systems use your data, and they all borrow from each other.
  • Leyawiin - Wednesday, October 17, 2012 - link

    "POOF!"

    Hate the commercials, but that guy makes me laugh.

Log in

Don't have an account? Sign up now