TSX Performance

Ravi and Marting gave some vague but still rather interesting performance data:

According to Intel, using an application that previously used a coarse grained lock (like the older MyISAM storage engines of MySQL) together with a TSX enabled library should improve scaling spectacularly. What's interesting is that even applications with finely grained locks should benefit from using TSX. As TSX uses the L1-cache to buffer the writes (David Kanter describes this in great detail here) and does not lock (unless re-execute/rollback takes place), there is less memory activity and especially less synchronization traffic. Or in other words, cache lines are less "thrown around".

There are some corner cases for which HLE/RTM will not work of course. The whole "CPU does the fine grained locks" is based upon tagging the L1 (64 B) cachelines and there are 512 of them to be specific (64 x 512 = 32 KB). There is only one "lock tag" per cacheline. More than one lock to the same cacheline will cause HLE/RTM to abort as the CPU cannot track the two locks separately in that case.

Second, all the "to be locked" variables of a TSX enabled piece of code must be placed into the L1-cache. If a piece of critical code needs to lock variables from more than 8 cachelines that all map to the slots of the same set, HLE is not going to work: the L1 is 8-way set-associative. Anything that interrupts the transaction will abort the transaction: non-maskable interrupts (interrupts that cannot be ignored), VM exits, faults...the list goes on. Still, there are many cases where TSX can definitely help, and code can be written to accommodate the requirements and limitations.


TSX will be supported by GCC v4.8, Microsoft's latest Visual Studio 2012, and of course Intel's C compiler v13. GLIBC support (rtm-2.17 branch) is also available. So it looks like the software ecosystem is ready for TSX. The coolest thing about TSX (especially HLE) is that it enables good scaling on our current multi-core CPUs without an enormous investment of time in the fine tuning of locks. In other words, it can give developers "fined grained performance at coarse grained effort" as Intel likes to put it.

In theory, most application developers will not even have to change their code besides linking to a TSX enabled library. Time will tell if unlocking good multi-core scaling will be that easy in most cases. If everything goes according to Intel's plan, TSX could enable a much wider variety of software to take advantage of the steadily increasing core counts inside our servers, desktops, and portables.

Easy to Use?
Comments Locked


View All Comments

  • dealcorn - Thursday, September 20, 2012 - link

    The graphs indicate the benefit of HLE versus no HLE gets bigger as the number of threads increase. However, they lack scaling on the horizonal axis: I have no sense of the benefit at real world numbers like 8 threads, 12 threads and 16 threads.

    Is the primary benefit of RTM greater CPU performance or programmer productivity?
  • GatoRat - Thursday, September 20, 2012 - link

    With the right application, you get both. With the wrong application, you get an apparent increase in productivity at the cost of performance. In the end, you still need smart, experienced and expensive engineers to know when to use this technology and when not to.
  • GatoRat - Thursday, September 20, 2012 - link

    It fails to properly explain what STM is. Unfortunately, most of the descriptions I've read make the same fundamental mistake made in this article--you don't lock a data structure or variables, you lock code. This difference is important because it means you can control it very exactly. These same articles then basically argue that STM is beneficial to lazy programmers who use locks too broadly. Yet programmers who do that aren't going to use STM, which is far more complicated and for which the benefits are dubious outside of some very narrow applications.

    My own experience is that non-locking algorithms are highly problematic and rarely give a performance advantage over using carefully designed locking algorithms. Moreover, in several situations a crudely designed locking algorithm can perform extremely fast due to the decreased complexity of the overall algorithm.

    Bottom line is that what Intel has been doing, even with Nehelem, is fantastic, but thinking this will obviate the need for spending a lot of time and effort and brain power is delusional. On the other hand, it will help in the myriad of situations where management contradicts reality and says "it's good enough."
  • GatoRat - Thursday, September 20, 2012 - link

    Incidentally, STM imposes a very real overhead which can easily cause worse performance than the alternative. Between the overhead and the increased complexity in code, in lightly loaded systems, the performance will always be worse.

    The hype is similar to that of parallel programming and will have just as dismal results. Like with parallel programming, you need a certain mindset and a problem which is conducive to being solved in that matter. I recently worked on a problem which simply had too many threads and asynchronous events due to the underlying (and well known) framework. STM would have been a disaster. I designed a pseudo-parallel architecture, but was never able to implement and test it due to the project being put on hiatus (by new management that was utterly clueless.)
  • clarkn0va - Thursday, September 20, 2012 - link

    You know these new extensions will succeed and rapidly gain market share because the marketers managed to use a capital X in the name.
  • glugglug - Thursday, September 20, 2012 - link

    Other than real lock-contention, where HLE will net a small improvement even over fine-grained locks, the situations where it won't work (i.e. running out of L1 cache lines) come into play just as much with only 1 thread running, and the code that gets hit by these will lose its single-threaded performance. Worst case would be single threaded performance hit near 50%, but I think that would be extremely rare. Still, the amount of multithreaded gain is deceptive when you are hindering the single threaded performance.

    Also, in order to avoid that single threaded hit you end up going back to fine grained locks -- the coarse locks are more likely to hit the restrictions and have to re-run.
  • JonBendtsen - Friday, September 21, 2012 - link

    Where are the scaling on the graphs? without scales the graph is useless.
  • wwwcd - Friday, September 21, 2012 - link

    Conclusion: The Need for doubling or quadrupling the amount of cache on the first floor rather than continuing torture tricks with software to optimize the use of already too little used since time immemorial volume. Of course, accompanied by the necessary improvement of the design of the CPU cores and adjusting volume levels of other caches.
    It is also necessary to increase the throughput of caches, or by widening the bus or increase their frequency of use, or by both methods
  • mallik79 - Monday, September 24, 2012 - link

    I work for improving performance on a large commercial database.
    Challenge seems to be multi-CPU than multi-core.
    Bottlenecks get magnified by adding cpu's instead of cores.
    (we have custom spinlock code, donot use system provided primitives).

    How many ever cores you add to a CPU, people still want multi-CPU huge boxes to run their databases.
    So does this transaction memory caching makes life tougher for multi-CPU as the lock is nearer to a particular CPU, it makes cores of other CPU starve?

    Thanks for all the in-depth reviews.

Log in

Don't have an account? Sign up now