HTPC enthusiasts are often concerned about the quality of pictures output by the system. While this is a very subjective metric, we have been taking as much of an objective approach as possible. We have been using the HQV 2.0 benchmark in our HTPC reviews to identify the GPUs' video post processing capabilities. The HQV benchmarking procedure has been heavily promoted by AMD, and Intel also seems to be putting its weight behind that.

The control panel for the Ivy Bridge GPU has a number of interesting video post processing control knobs which earlier drivers lacked. The most interesting of these is the ability to perform noise reduction on a per-channel basis, i.e, only for luma or for both luma and chroma. More options are always good for consumers, and the interface makes it simple enough to leave the decision making to the drivers or the application. An explicit skin tone correction option is also available.

HQV scores need to be taken with a grain of salt. In particular, one must check the tests where the GPU lost out points. In case those tests don't reflect the reader's usage scenario, the handicap can probably be ignored. So, it is essential that the scores for each test be compared, rather than just the total value.

The HQV 2.0 test suite consists of 39 different streams divided into 4 different classes. For the Ivy Bridge HTPC, we used Cyberlink PowerDVD 12 with TrueTheater disabled and hardware acceleration enabled for playing back the HQV streams. The playback device was assigned scores for each, depending on how well it played the stream. Each test was repeated multiple times to ensure that the correct score was assigned. The scoring details are available in the testing guide from HQV.

Blu-rays are usually mastered very carefully. Any video post processing (other than deinterlacing) which needs to be done is handled before burning it in. In this context, we don't think it is a great idea to run the HQV benchmark videos off the disc. Instead, we play the streams after copying them over to the hard disk. How does the score compare to what was obtained by the Sandy Bridge and Llano at launch?

In the table below, we indicate the maximum score possible for each test, and how much each GPU was able to get. The HD3000 is from the Core i5-2520M with the Intel drivers. The AMD 6550D was tested with Catalyst 11.6, driver version 8.862 RC1 and the HD4000 with driver version

HQV 2.0 Benchmark
Test Class Chapter Tests Max. Score Intel HD3000 AMD 6550D (Local file) Intel HD4000
Video Conversion Video Resolution Dial 5 5 4 5
Dial with Static Pattern 5 5 5 5
Gray Bars 5 5 5 5
Violin 5 5 5 5
Film Resolution Stadium 2:2 5 5 5 5
Stadium 3:2 5 5 5 5
Overlay On Film Horizontal Text Scroll 5 3 5 3
Vertical Text Scroll 5 5 5 5
Cadence Response Time Transition to 3:2 Lock 5 5 5 5
Transition to 2:2 Lock 5 5 5 5
Multi-Cadence 2:2:2:4 24 FPS DVCam Video 5 5 5 5
2:3:3:2 24 FPS DVCam Video 5 5 5 5
3:2:3:2:2 24 FPS Vari-Speed 5 5 5 5
5:5 12 FPS Animation 5 5 5 5
6:4 12 FPS Animation 5 5 5 5
8:7 8 FPS Animation 5 5 5 5
Color Upsampling Errors Interlace Chroma Problem (ICP) 5 2 2 5
Chroma Upsampling Error (CUE) 5 2 2 5
Noise and Artifact Reduction Random Noise SailBoat 5 5 5 5
Flower 5 5 5 5
Sunrise 5 5 5 5
Harbour Night 5 5 5 5
Compression Artifacts Scrolling Text 5 3 3 5
Roller Coaster 5 3 3 5
Ferris Wheel 5 3 3 5
Bridge Traffic 5 3 3 5
Upscaled Compression Artifacts Text Pattern 5 3 3 3
Roller Coaster 5 3 3 3
Ferris Wheel 5 3 3 3
Bridge Traffic 5 3 3 3
Image Scaling and Enhancements Scaling and Filtering Luminance Frequency Bands 5 5 5 5
Chrominance Frequency Bands 5 5 5 5
Vanishing Text 5 5 5 5
Resolution Enhancement Brook, Mountain, Flower, Hair, Wood 15 15 15 15
Video Conversion Contrast Enhancement Theme Park 5 5 5 5
Driftwood 5 5 5 5
Beach at Dusk 5 2 5 5
White and Black Cats 5 5 5 5
Skin Tone Correction Skin Tones 10 0 7 7
    Total Score 210 173 184 197

A look at the above table reveals that Intel has caught up with the competition in terms of HQV scores. In fact, they have comfortably surpassed what the Llano got at launch time. Many of the driver problems plaguing AMD's GPUs hadn't been fixed when we looked at the AMD 7750 a couple of months back, so it is likely that the Llano's scores have not budged much from what we have above. In fact, the score of 197 ties with what we obtained for the 6570 during our discrete HTPC GPU shootout.

Testbed and Software Setup Video Post Processing in Action


View All Comments

  • ganeshts - Tuesday, April 24, 2012 - link

    The FSE mode performed visibly worse for me compared to FSW in the few cases that I tried. I have got the rest of the settings that Andrew @ MR used. I may try it and see if it improves things. My aim was to get madVR to render without any dropped frames, and I was able to get that at DDR3-1600 (which is what Andrew used too) for almost all the clips I had (except 720p60, which I didn't try till yesterday). Reply
  • satish0072001 - Tuesday, April 24, 2012 - link

    Video decoding and rendering benchmarks
    Can you provide the learning guide how you've got those scores? It will be very helpful for some of us... I know about hqv score.. but this one is new to me.. kindly help :)
    From where can I get these benchmarks if i have to compare my existing system with the IVB results?
  • LuckyKnight - Tuesday, April 24, 2012 - link

    In the article there is a promise of a BIOS update to fix the 23.97Hz issue. Wasn't something similar also promised for sandy bridge in the same article over a year ago!! That never happened did it. I want to build a HTPC already! Reply
  • ganeshts - Tuesday, April 24, 2012 - link

    Well, something did happen with SNB.. they got it to 23.972 Hz :) If you think about it, video cards with AMD and NVIDIA GPUs also end up in the 23.974 - 23.978 range, and only very rarely do I actually see a GPU outputting exactly 23.976023976 Hz.

    If Intel gets between 23.974 - 23.978 in a stable manner, I will consider the matter closed.
  • Shaggie - Thursday, April 26, 2012 - link

    Is there still the problem like with SB that the driver puts color space to limited range when connecting to the tv with HDMI and resets it with every refresh rate switch/reboot with the integrated graphics? Reply
  • Stabgotham - Monday, April 30, 2012 - link

    Is there a point to getting an H77 board with Ivy Bridge if all you are using it for is as an HTPC (sans overclock)? I can't tell what the benefit would be to justify the price increase. Reply
  • crisliv - Wednesday, June 13, 2012 - link

    Nice article! As always.
    About the note:
    "The good news is that Intel is claiming that this issue is fully resolved in the latest production BIOS on their motherboard. This means that BIOS updates to the current boards from other manufacturers should also get the fix. Hopefully, we should be able to independently test and confirm this soon."

    What does it mean exactly? Does it mean that this BIOS update should get refresh rate closer to the 23.976 than it was in your test? And "on their motherboard" - does it mean that this BIOS update is for Intel MB only?

    True that in AMD and nVidia the out of the box refresh rate for 23 is never precisely 23.976, but the custom timings on nVidia allows you to get closer to is. There is no custom timing settings on the HD4000, right?
  • LuckyKnight - Thursday, June 14, 2012 - link

    Do we have an update regarding 23.967hz? Reply
  • theboyknowsclass - Tuesday, July 24, 2012 - link

    it's been a while, and couldn't find any follow up Reply
  • Hdale85 - Thursday, August 23, 2012 - link

    I've been looking at an Ivy Bridge setup with the H77/Z77 chipset but I can't find any information about the audio support? Can it bitstream TrueHD and DTS-HD tracks? The older chipsets do it so I would find it strange that the new ones don't, but I don't see it mentioned on any of the new boards or in the intel information. Reply

Log in

Don't have an account? Sign up now