Final Words

I've been a fan of SandForce's technology since it first showed up in OCZ's Vertex 2 Pro in late 2009. Performance has never been an issue with SandForce and because of the fact that the controller writes less than its competitors, the controller and drives based on it are well behaved over months of use. The biggest issue with SandForce has always been a lack of validation compared to other, bigger players like Intel and Samsung. SandForce relies on its partners to do a lot of the validation and testing that would normally be internalized at its competitors. Until now, SandForce hasn't really had a partner large enough to really throw a ton of resources at drive validation. Now that SandForce is under the LSI umbrella things may change, but until then we finally have a well validated SF-2281 drive: the Intel SSD 520.

I'm still curious to see if other bugs crop up but if Intel hasn't found anything else after twelve months of testing I'm willing to bet that either the SF-2281 is irreparably broken or the 520 is going to be a reliable SSD.

I only have one data point where the 520 behaves better than other SF-2281 based drives, but that alone is a perfect example of what you pay for with Intel. This is exactly what we've been waiting for. If you want the absolute fastest SSD on the market today, the Intel SSD 520 is the only drive to get. If you're put off by the price, Samsung's SSD 830 is an excellent alternative.

I'm going to save this next bit for a future article, but have a look at the 520's performance in our enterprise workloads compared to the Intel SSD 320:

Enterprise SSD Performance
  Oracle Swingbench MS SQL DailyUpdates MS SQL WeeklyMaint
Intel SSD 320 300GB 56.5 MB/s 207.3 MB/s 230.4 MB/s
Intel SSD 520 240GB 67.2 MB/s 376.7 MB/s 418.1 MB/s

The 320 is actually widely used in servers as it's very reliable and can last a good amount of time with the right amount of over-provisioning. The 520 just destroys it. The bigger benefit is that if you're dealing with a workload that's not already compressed, the 520 will guarantee you much better drive longevity than the 320 thanks to the fact that it's simply not writing as much data to NAND. If you're looking for an affordable way to get a ton of IOPS for your enterprise workloads, Cherryville may be your ticket...

Power Consumption
Comments Locked

138 Comments

View All Comments

  • hugh2323 - Monday, February 6, 2012 - link

    Some posters are missing the reason why this drive has a high premium. It is intented for the market that values reliability over price. This market considers the price of lost data to be higher than the premium of the drive. If you are a business, and a computer goes down with its data, the lost hours of productivity and cost of data loss can easily add up. Compared to paying 20% extra for the drive initially (or whatever it is), is chump change compared to that.

    And then there is the consumer market that doesn't have time to f*** around with blue screen of death and whose purse strings perhaps aren't so tight.

    So if you don't want to pay the premium, then your not in the target market. Simple as that.
  • neotiger - Monday, February 6, 2012 - link

    ... except this SSD doesn't give you reliability.

    It doesn't have any capacitors, which means after a computer crash or a power outage you will lose your data.

    Not exactly reliable.
  • eman17j - Wednesday, February 8, 2012 - link

    ssd are nonvolatile memory how are you going to lose all your data?
  • eman17j - Wednesday, February 8, 2012 - link

    oops I spoke to soon I know what you mean it wouldnt have the power to finish any write operation if there was an crash or power outage thereby losing your data
  • bji - Wednesday, February 8, 2012 - link

    Irrelevant. Any application can make a sync call to ensure the data is written to the flash as necessary. Any application which does not make this sync call is risking the data at multiple levels of write cache before it actually makes it to the flash, so a capacitor would reduce the window of opportunity for data loss only slightly. And if you care that much about data loss, you are using sync anyway at that point of the application.
  • eman17j - Wednesday, February 8, 2012 - link

    buy an ups
  • Jediron - Tuesday, February 7, 2012 - link

    Since when are MLC based SSD's more reliabele then SLC based SSD's ?
    Sorry, if they intended to put these SSD's in the market for endurance and reliability they make a mistake.
  • FunBunny2 - Tuesday, February 7, 2012 - link

    bingo. but they last used SLC in the X25-E, and even Texas Memory is switching to MLC. The vendors are convinced they can get through warranty period with MLC. Unlike a HDD, which can last pretty much forever if it makes it through infant mortality, an SSD will die when it's time is up (think "Blade Runner").
  • bji - Wednesday, February 8, 2012 - link

    Theoretically, the failure mode for completely worn out flash should be that the drive can no longer be written to, but every existing block can still be read from. Thus you would not lose any data, you'd simply have to buy a new drive and clone the old one to it.

    In practice, it seems like either most SSD failures are not in the flash (maybe they are the result of firmware bugs that wedge the on-disk structures into an unrecoverable state?), or that if they are in the flash most firmware do not handle such failures gracefully and instead of putting the device into a read-only recoverable mode just give up and die. This is after reading many, many reports of SSD failures where the device became completely inoperable instead of going into read-only mode.

    Also I've had plenty of platter HDD failures over the years, I always found them to be the least reliable component of any computer (ok, I guess fans are less reliable, but fan failure usually isn't catostrophic and is easy to fix; also power supplies die pretty frequently and finally for some reason CD/DVD drives also seem to fail disturbingly often).
  • beginner99 - Tuesday, February 7, 2012 - link

    I disagree. It is too late to the market. the crucial m4 has proven its reliability in the real world and the intel drive has no special reliability features. And IMHO real world usage beats any validation tests intel can do.

    If you value your data you would have to back it up anyway, regardless of which drive you use.

    m4: never heard of BSOD issues.

    While I agree that sandforce drives have issues, there are others that do not and are also cheaper. The m4 is way best value. It's similar to CPUs. It is basically impossible to recommend any Desktop AMD CPU in any price or performance category. Same for SSD but here it is not possible to recommend Intel anymore.Neither for price, performance or reliability.

Log in

Don't have an account? Sign up now