MS SQL Server 2008 Power Analysis

We'll let power consumption be the final judge:

Concurrency CMT No CMT Power Increase
CMT vs. No CMT
HTT No HTT Power Increase
HTT vs. No HTT
25 144 141 2% 159 156 2%
40 156 160 -2% 169 163 4%
80 185 194 -5% 182 174 4%
100 211 209 1% 192 177 8%
125 223 224 0% 201 186 8%
200 250 254 -2% 235 213 10%
300 290 283 3% 277 251 10%
350 305 288 6% 299 275 9%
400 316 288 10% 303 275 10%
500 316 291 9% 314 275 14%
600 324 299 9% 312 285 9%
800 324 308 5% 320 289 11%

CMT increases the amount of power consumed by 6-10%, but only at high loads. The extra clusters probably allow the modules (as AMD likes to call the cores) to sleep more frequently at lighter loads, and we measure no increase or even a small decrease in power consumption. The message is clear: there is no reason to disable CMT when running MS SQL Server.

Hyper-Threading seems to increase the power dissipation always. At higher concurrencies, the higher performance must be paid with a 10-14% power increase, so you might consider disabling Hyper-Threading if your want to cap maximum power output for some reason (e.g. getting to close to the maximum amount of amps allowed in your rack).

MS SQL Server OLAP Conclusion

We invested 10 times more time in our MS SQL Server testing, but frankly we are glad we did. The Opteron 6174 seems to be a true champion from a simple "throughput/power at 100%" analysis, but the reality is that servers hardly ever run at such loads. Under light loads, the Opteron 6174 is either slower and consumes more power (Balanced power setting) or it consumes quite a bit more (High Performance power setting) while being roughly on par with the competition in terms of performance. At medium load, the Opterons are beaten solidly by the Xeon; the Xeon consumes quite a bit less power in "Balanced" and performs a lot better (response times).

At the end of the day, the Xeon X5650 is the better chip (especially in "Balanced" mode) but it's also the more expensive one. The Opteron 6276 price/performance/watt ratio remains quite attractive, but if pricing is taken into account everything will depend on which MS SQL Server License you will get. We will leave that analysis to other people as an economic analysis of complex, customer unfriendly licensing is definitely out of the scope of this article.

Threading Tricks or Not? MySQL OLAP Testing
Comments Locked


View All Comments

  • Scali - Saturday, February 11, 2012 - link

    "It also reduces throughput."

    No, it improves throughput, assuming we are talking from improvement going from 1 physical core to 2 logical cores.
    Clearly two logical cores (on the same physical core) have less throughput than two physical cores, but that's obvious since you only have half the hardware.

    And that, together with the fact that Intel's SMT chips have far better single-threaded performance to begin with, results in very good performance per die area (you know, that thing that people used to praise AMD GPUs for).

    "Yes, it does, via the implementation of all that shared hardware on the chip."

    You can't say that, since there is no non-modular version of Bulldozer (just as there is no non-HT version of the Intel architectures).
    However, if you compare a 4-core HT architecture with a non-HT architecture, be that a Core2 Quad or a Phenom X4, Intel's transistorcount is clearly in the same ballpark, so HT does not add much in terms of transistorcount.

    With CMT we see little or no indication of reduced transistorcount. AMD's 4-module chips are MUCH larger than regular 4-core chips have been. In fact, AMD"s 4-module design is even larger than Intel's 6-core design with HT.

    "Two different approaches to the same idea."

    I disagree. SMT is a very different idea from CMT (which is a bogus marketing term invented by AMD anyway). CMT is more of a marketing excuse for not having proper SMT, and shows no merit in actual silicon.

    "but I don't think we can label one as inherently better than the other yet."

    Well clearly we disagree on that then.
    I think SMT is clearly inherently better than CMT. SMT has far more flexible sharing of resources than AMD's half-baked approach.
    And any theoretical disadvantages (fighting over resources and all that) can be put to bed with benchmarking such as in this review: the disadvantages may exist, but the net performance is unbeatable anyway. A midrange Xeon schools a CMT-based chip of twice the size.
  • Andexxx - Wednesday, February 15, 2012 - link

    Well, there are a lot of factors affecting single-threaded performance in real life. So CMT indeed has its scaling advantages as tests suggested. At least most of the things should be constant when comparing CMT-on and CMT-off, while comparing SMT and CMT on different implementations is not. Lack of single-threaded performance is not a valid point of blaming CMT.

    If you want to *proof* CMT is a half-baked marketing crap while SMT is the only solution, what you need is a SMT-based AMD BD monolithic core or a CMT-based Intel monolithic module for comparison.

    For the transistors counting, well, that's their choice of making such a cache and uncore configuration. You can keep telling 4-module chip is blahblahblah, but in some cases it beats a 4C8T Xeon chips. Transistors is not a big matter from customer viewpoint but just the producer viewpoint. If you want to argue with GPU's performance metrics, GPU is a data-parallel processor with bunch of logic units, while CPU is a latency-sensitive girlfriend of caches. Large amount of cache can make your Performance/mm^2 or Performance/transistors look worse. So trade-offs on the amount of cache should have been done before they started to design the chip.
  • Scali - Wednesday, February 15, 2012 - link

    Well, one of the reasons why AMD's current CPUs have such poor single-threaded performance is because they moved from 3 ALUs per thread to 2 ALUs per thread.
    This is part of the whole CMT design.
    So in that sense, CMT can be blamed for the poor single-threaded performance at least.
    And since single-threaded performance is so bad, it is only logical that scaling to more threads is relatively good.
    On a CPU with faster single-threaded performance, you run into IO limits sooner (memory, disk etc), so it is more difficult to maintain similar scaling with increased thread count.

    The strength of SMT is that Intel did not have to cut any ALUs when implementing HT. Pentium 4 Northwood with HT still had two double-pumped ALUs, like the non-HT Willamette that went before it.
    Likewise, Core i7 still has 3 ALUs, like Core2.
    Another strength of SMT is that even with one less ALU per 2 threads than CMT, it still reaches similar performance in multithreaded scenarios. CMT can not share these ALUs between threads, while SMT can.
    Conclusion: CMT is nonsense.
    For the full version, see:
  • - Monday, February 13, 2012 - link

    If Bulldozer arc really bad, how about this?
    Can someone prove this award is a big liar?
  • duploxxx - Tuesday, February 14, 2012 - link

    read the article, the baseline they use for price/performance is based on spec results....lots of companies still use these results to decide on a platform.

    but then again, benchmarks don't always show the real world value or even hard to compare since many have in house applications that don't scale or scale different like the ones benchmarked in reviews. 90% of the datacenters don't even require more then any midrange cpu, anything above midrange is wasted money and both vendors provide more then adequate solutions to that. It's the human mind that is often blocking sanity. Investing that wasted money in other solutions often provide a better total performing solution.
  • anti_shill - Monday, April 2, 2012 - link

    shill_detector by anti_shill on Monday, April 02, 2012
    Here's a more accurate reflection of Bulldozer/ interlagos performance, untainted by intel ad bucks...

    But if u really want to see what the true story is, have a look at AMD's stock price lately, and their server wins. They absolutely smoke intel on virtualization, and anything that requires a lot of threads. It's not even close.

Log in

Don't have an account? Sign up now