Tahiti: The First Direct3D 11.1 GPU

One of the many changes coming in Windows 8 next year will be the next iteration of Direct3D, which will be Direct3D 11.1. More so than any other version of Direct3D so far, D3D11.1 is best summed up as a housekeeping release. There will be some new features, but compared to even past point releases such as 10.1 and 9c it’s a small release that’s going to be focusing more on improving the API itself – particularly interoperability with SoC GPUs for Windows 8 – than it will be about introducing new features. This is largely a consequence of the growing length of time for all matters of development hardware and software. By the time Windows 8 ships Direct3D 11 will be 3 years old, but these days that’s shorter than the development period for some AAA games. Direct3D 11/11.1 will continue to be the current Windows 3D API for quite some time to come.

With regards to backward compatibility in D3D11.1, there’s one new feature in particular that requires new hardware to support it: Target Independent Rasterization. As a result AMD’s existing D3D11 GPUs cannot fully support D3D11.1, thereby making Tahiti the first D3D 11.1 GPU to be released. In practice this means that the hardware is once again ahead of the API, even more so than what we saw with G80 + D3D10 or Cypress (5870) + D3D11 since D3D11.1 isn’t due to arrive for roughly another year. For the time being Tahiti’s hardware supports it but AMD won’t enable this functionality until the future – the first driver with D3D11.1 support will be a beta driver for Windows 8, which we expect we’ll see for the Windows 8 beta next year.

So what does D3D11.1 bring to the table? The biggest end user feature is going to be the formalization of Stereo 3D support into the D3D API. Currently S3D is achieved by either partially going around D3D to present a quad buffer to games and applications that directly support S3D, or in the case of driver/middleware enhancement manipulating the rendering process itself to get the desired results. Formalizing S3D won’t remove the need for middleware to enable S3D on games that choose not to implement it, but for games that do choose to directly implement it such as Deus Ex, it will now be possible to do this through Direct3D.

S3D related sales have never been particularly spectacular, and no doubt the fragmentation of the market is partially to blame, so this may be the push in the right direction that the S3D market needs, if the wider consumer base is ready to accept it. At a minimum this should remove the need for any fragmentation/customization when it comes to games that directly support S3D.

With S3D out of the way, the rest of the D3D11.1 feature set isn’t going to be nearly as visible. Interoperability between graphics, video, and compute is going to be greatly improved, allowing video via Media Foundation to be sent through pixel and compute shaders, among other things. Meanwhile target independent rasterization and some new buffer commands should give developers a few more tricks to work with, while double precision (FP64) support will be coming to pixel shaders on hardware that has FP64 support.

Finally, looking at things at a lower level D3D11.1 will be released alongside DXGI 1.2 and WDDM 1.2, the full combination of which will continue Microsoft’s long-term goal of making the GPU more CPU-like. One of Microsoft’s goals has to been to push GPU manufacturers to improve the granularity of GPU preemption, both for performance and reliability purposes. Since XP things have gotten better as Vista introduced GPU Timeout Detection and Recovery (TDR) to reset hung GPUs, and a finer level of granularity has been introduced to allow multiple games/applications to share a GPU without stomping all over each other, but preemption and context switches are still expensive on a GPU compared to a CPU (there are a lot of registers to deal with) which impacts performance and reliability.

To that end preemption is being given a bit more attention, as WDDM 1.2 will be introducing some new API commands to help manage it while encouraging hardware developers to support finer grained preemption. Meanwhile to improve reliability TDR is getting a major addition by being able to do a finer grained reset of the GPU. Currently with Windows 7 a TDR triggers a complete GPU reset, but with Windows 8 and WDDM 1.2 the GPU will be compartmentalized into “engines” that can be individually reset. Only the games/applications using a reset engine will be impacted while everything else is left untouched, and while most games and applications can already gracefully handle a reset, this will further reduce the problems a reset creates by resetting fewer programs.

 

Building Tahiti & the Southern Islands Partially Resident Textures: Not Your Father’s Megatexture
Comments Locked

292 Comments

View All Comments

  • GenSozo - Thursday, December 22, 2011 - link

    Style? Another possibility is that he has no life, a heavily worn F5 key, and lots of angst.
  • Blaster1618 - Monday, December 26, 2011 - link

    One request when diving into acronyms (from the “quick refresher”), first one is followed by (definition in parenthesis) or hyperlink. Your site does the best on the web at delving into and explaining the technical evolution of computing. You maybe even able to tech the trolls and shills a thing or to they can regurgitate at there post X-mas break circle jerk. Never underestimate the importance or reach of your work.
  • lordken - Friday, January 6, 2017 - link

    mmh quite far from disappointing, still running on 7950 as of today [5 years later] :)
  • Concillian - Thursday, December 22, 2011 - link

    Page 1
    Power Consumption Comparison: Columns: AMD / Price / NVIDIA

    Presumably mislabeled.
  • Anand Lal Shimpi - Thursday, December 22, 2011 - link

    Fixed, thank you!

    Take care,
    Anand
  • Penti - Thursday, December 22, 2011 - link

    Will the new video decode engine either add software accelerated gpu or fixed function hardware WebM/VP8 video decode? ARM SoC's basically already has those capabilities with rock-chip including hw-decoding, TI OMAP IVA3 DSP-video processor supporting VP8/WebM, Broadcom supporting it in their video processor and others to come. Would be odd to be able to do smooth troublefree 1080p WebM on a phone or tablet, but not a desktop and laptop computer without taxing the cpu and buses like crazy. It's already there hardware-wise in popular devices to do if they add software/driver support for it.

    Nice to see a new generation card any how.
  • Ryan Smith - Thursday, December 22, 2011 - link

    It's UVD3, the same decoder that was on Cayman. So if Cayman can't do it, Tahiti can't either.
  • MadMan007 - Thursday, December 22, 2011 - link

    Pretty sure the chart on the first page should be labeled Price Comparison not Power Consumption Comparison.

    Unless perhaps this was a sly way of saying money is power :)
  • descendency - Thursday, December 22, 2011 - link

    You list the HD 6870 as 240 on the first page ("AMD GPU Specification Comparison" chart) but then list it as around 160 in the "Winter 2011 GPU Pricing Comparison" chart. 80 dollars is quite a difference.
  • Anand Lal Shimpi - Thursday, December 22, 2011 - link

    Fixed, sorry those were older numbers.

    Take care,
    Anand

Log in

Don't have an account? Sign up now