Conclusions

To help summarize the current situation in the server CPU market, we have drawn up a comparison table of the performance we have measured so far. We'll compare the new Interlagos Opteron 6276 against the outgoing Opteron 6174 as well as teh Xeon X5650.

  Opteron 6276 vs.
Opteron 6174
Opteron 6276 vs.
Xeon X5650
ESXi + Linux -1% -2%
ESXi + Windows = +3%
Cinebench +2% +9%
3DS Max 2012 (iRay) -9% to + 4% -10% to +3%
Maxwell Render +4% +6%
Blender -4% -24%
Encryption/Decryption AES +265% / +275% +2% / +7%
Encryption/Decryption Twofish/Serpent +25% / +25% 31% / 46%
Compression/decompression +10% / +10% -33%/ +22%

Let us first discuss the virtualization scene, the most important market. Unfortunately, with the current power management in ESXi, we are not satisfied with the Performance/watt ratio of the Opteron 6276. The Xeon needs up to 25% less energy and performs slightly better. So if performance/watt is your first priority, we think the current Xeons are your best option.

The Opteron 6276 offers a better performance per dollar ratio. It delivers the performance of $1000 Xeon (X5650) at $800. Add to this that the G34 based servers are typically less expensive than their Intel LGA 1366 counterparts and the price bonus for the new Opteron grows. If performance/dollar is your first priority, we think the Opteron 6276 is an attractive alternative.

And then there is Windows Server 2008 R2. Typically we found that under heavy load (benchmarking at 85-100% CPU load) the power consumption was between 3% (integer) to 7% (FP) higher on the Opteron 6276 than on the Xeons and Opteron 6100, a lot better than under ESXi. Add to this the fact that the new Opteron energy usage at low load is excellent and you understand that we feel that there is no reason to go for the Opteron 6100 anymore. Again, AMD still understands that it should price its CPUs more attractive than the competition, so from the price/performance/watt point of view, the Opteron 6276 is a good cost effective alternative to the Xeon...on the condition that you enable the "high performance" policy and that AMD keeps the price delta the same in the coming months.

That is the good news. We cannot help but to feel a bit disappointed too. AMD promised us (in 2009/2010) that the Opteron 6200 would be significantly faster than the 6100: "unprecedented server performance gains". That is somewhat the case if you recompile your software with the latest and greatest optimized compiler as AMD's own SPEC CINT (+19%), CFP 2006 (+11%) and Linpack benchmarks (+32%) show.

One of the real advantages of a new processor architecture (prime examples where the K7 and K8) is if it performs well in older software too, without requiring a recompile. For some people of the HPC world, recompiling is acceptable and common, but for everybody else (that is probably >95% of the market!), it's best if existing binaries run faster. Administrators generally are not going to upgrade and recompile their software just to make better use of a new server CPU. Hopefully AMD's engineers have been looking into improving the legacy software performance of their latest chip the last few months, because it could use some help.

On the other side of the coin, it is clear that some of the excellent features of the new Opteron are not leveraged by the current software base. The deeper sleep and more advanced core gating is not working to its full potential, and the current operating systems frequently don't appear to know how to get the best from Turbo Core. The clock can be boosted by 39% when half of the cores are active, but an 18% boost was the best we saw (in a single-threaded app!). Simply turning the right knobs gave some tangible power savings (see ESXi) and some impressive performance improvements (see Windows Server 2008).

In short, we're going to need to do some additional testing and take this server out for another test drive, and we will. Stay tuned for a follow-up article as we investigate other options for improving performance.

Other Tests: TrueCrypt and 7-Zip
Comments Locked

106 Comments

View All Comments

  • neotiger - Tuesday, November 15, 2011 - link

    Most of the benchmarks are for rendering: Cinebench, 3DSMax, Maxwell, Blender, etc.

    How many enterprises actually do 3D rendering?

    Far more common enterprise applications would be RDBMS, data warehouse, OLTP, JVM, app servers, etc.

    You touched on some of that in just one virtualization benchmark, vApus. That doesn't make sense either - how many enterprises you know run database servers on VM?

    A far more useful review would be running separate benchmarks for OLTP, OLAP, RDBMS, JVM, etc. tppc, tpce, tpch would be a good place to start
  • JohanAnandtech - Tuesday, November 15, 2011 - link

    I definitely would like to stay close to what people actually use.
    In fact we did that:
    http://www.anandtech.com/show/2694

    But the exploding core counts made it as good as impossible.

    1. For example, a website that scales to 32 cores easily: most people will be amazed how many websites have trouble scaling beyond 8 cores.

    2. Getting an OLTP database to scale to 32 cores is nothing to sneeze at. If your database is small and you run most of it in memory, chances are that you'll get a lot of locks and that it won't scale anyway. If not, you'll need several parallel RAID cards which have a lot of SSDs. We might pull that one off (the SSDs), but placing several RAID cards inside a server is most of the time not possible. once you solve the storage bottleneck, other ones will show up again. Or you need an expensive SAN... which we don't have.

    We had an OLAP/ OLTP and Java benchmarks. And they were excellent benchmarks, but between 8 and 16 cores, they started to show decreasing CPU utilization despite using SSDs, tweaking etc.

    Now puts yourself in our place. We can either spend weeks/months getting a database/website to scale (and we are not even sure it will make a real repeatable benchmark) or we can build upon our virtualization knowledge knowing that most people can't make good use of a native 32 core database anyway (or are bottlenecked by I/O and don't care anyway), and buy their servers to virtualize.

    At a certain point, we can not justify to invest loads of time in a benchmark that only interest a few people. Unless you want to pay those people :-). Noticed that some of the publications out there use geekbench (!) to evaluate a server? Noticed how many publication run virtualization benchmarks?

    "That doesn't make sense either - how many enterprises you know run database servers on VM?"

    Lots of people. Actually besides a few massive Oracle OLTP databases, there is no reason any more not to virtualized your databases. SQL server and MySQL are virtualized a lot. Just googling you can find plenty of reports of MySQL and SQL server on top of ESX 4. Since vSphere 4 this has been common practice.

    "etc. tppc, tpce, tpch would be a good place to start "

    No not really. None of the professional server buyers I know cares about TPC benches. The only people that mentione them are the marketing people and hardware enthusiast that like to discuss high-end hardware.

    So you prefer software that requires 300.000$ of storage hardware over a very realistic virtualization benchmarks which are benchmarked with real logs of real people?

    Your "poor benchmark choice" title is disappoing after all the time that my fine colleagues and me have spend on getting a nice website + groupware virtualization benchmark running which is stresstested by vApus which uses real logs of real people. IMHO, the latter is much more interesting than some inflated TPC benchmarks with storage hardware that only the fortune 500 can afford. Just HMO.
  • neotiger - Tuesday, November 15, 2011 - link

    While scaling to 32 cores can be problematic for some software, it's worth keeping in mind that the vast majority of dual-socket servers don't have 32 cores.

    In fact, a dual-CPU Intel server only has *at most* 12 cores, that's a far cry from 32-cores. Postgresql & MySQL has no problem at all to scale to 12 cores and beyond.

    Now if AMD decided to make a CPU with crappy per-core performance but has so many cores that most software can't take full advantage of, that's their own fault. It's not like they haven't been warned. Sun tried and failed with the same approach with T2. If AMD is hellbent on making the same mistake, they only have themselves to blame.

    My post title is a bit harsh. But it is disappointing to see a review that devotes FOUR separate benchmarks to 3D rendering, an application that the vast majority of enterprises have no use for at all. Meanwhile, the workhorse applications for most enterprises, OLTP, OLAP, and such, received far too little attention.
  • tiro_uspsss - Wednesday, November 16, 2011 - link

    "In fact, a dual-CPU Intel server only has *at most* 12 cores..."

    Incorrect. There is s1567. This allows 2-8 CPUs, with a max. of 8C/16T per CPU......... which I'm wondering why Anandtech failed to include in this review?

    s1567 CPUs also have quad channel memory...

    I really wish s1567 was included in this review..
  • Photubias - Wednesday, November 16, 2011 - link

    Intel's S1567?
    You mean the E7-8830 CPU from the E7-8800 series which has prices *starting* at $2280?

    -> http://ark.intel.com/products/series/53672
  • bruce24 - Wednesday, November 16, 2011 - link

    "You mean the E7-8830 CPU from the E7-8800 series which has prices *starting* at $2280?"

    I'm not sure what he meant, but there are E7-2xxx processors for dual socket servers, which are priced much lower than the E7-8xxx processors which are for 8+ socket servers.
  • Photubias - Thursday, November 17, 2011 - link

    You mean the E7-28xx series
    http://ark.intel.com/products/series/53670 ?

    They are priced a bit lower, is there a comparison you suggest?
  • Sabresiberian - Wednesday, November 16, 2011 - link

    I have trouble understanding why people think a review should include research into every other similar product that might be used for the same purpose.

    I mean, I can understand ASKING for a review of another specific product, particularly if you've actually done some research on your own and haven't found the information you want, but to imply a review isn't complete because it didn't mention or test another piece of hardware is a bit - unrealistic.

    ;)
  • JohanAnandtech - Thursday, November 17, 2011 - link

    Sabresiberian, a very sincere thank you for being reasonable. :-)

    Frankly I can't imagine a situation where someone would have trouble to decide between a Westmere-EX and an AMD CPU. Most people checking out the Westmere-EX go for the RAS features (dual) or RAS + ultimate high thread performance (Quad). In all other cases dual Xeon EP or Opterons make more sense power and pricewise.
  • JustTheFacts - Thursday, November 17, 2011 - link

    Really? Is it that much trouble to understand that people want to see the latest AMD cpu's compared to the most current generation of Intel hardware? Especially when the previous Intel processor review posted on this site reported on Westmere-EX performance? I have trouble understanding why people wouldn't expect it.

Log in

Don't have an account? Sign up now