Conclusions

To help summarize the current situation in the server CPU market, we have drawn up a comparison table of the performance we have measured so far. We'll compare the new Interlagos Opteron 6276 against the outgoing Opteron 6174 as well as teh Xeon X5650.

  Opteron 6276 vs.
Opteron 6174
Opteron 6276 vs.
Xeon X5650
ESXi + Linux -1% -2%
ESXi + Windows = +3%
Cinebench +2% +9%
3DS Max 2012 (iRay) -9% to + 4% -10% to +3%
Maxwell Render +4% +6%
Blender -4% -24%
Encryption/Decryption AES +265% / +275% +2% / +7%
Encryption/Decryption Twofish/Serpent +25% / +25% 31% / 46%
Compression/decompression +10% / +10% -33%/ +22%

Let us first discuss the virtualization scene, the most important market. Unfortunately, with the current power management in ESXi, we are not satisfied with the Performance/watt ratio of the Opteron 6276. The Xeon needs up to 25% less energy and performs slightly better. So if performance/watt is your first priority, we think the current Xeons are your best option.

The Opteron 6276 offers a better performance per dollar ratio. It delivers the performance of $1000 Xeon (X5650) at $800. Add to this that the G34 based servers are typically less expensive than their Intel LGA 1366 counterparts and the price bonus for the new Opteron grows. If performance/dollar is your first priority, we think the Opteron 6276 is an attractive alternative.

And then there is Windows Server 2008 R2. Typically we found that under heavy load (benchmarking at 85-100% CPU load) the power consumption was between 3% (integer) to 7% (FP) higher on the Opteron 6276 than on the Xeons and Opteron 6100, a lot better than under ESXi. Add to this the fact that the new Opteron energy usage at low load is excellent and you understand that we feel that there is no reason to go for the Opteron 6100 anymore. Again, AMD still understands that it should price its CPUs more attractive than the competition, so from the price/performance/watt point of view, the Opteron 6276 is a good cost effective alternative to the Xeon...on the condition that you enable the "high performance" policy and that AMD keeps the price delta the same in the coming months.

That is the good news. We cannot help but to feel a bit disappointed too. AMD promised us (in 2009/2010) that the Opteron 6200 would be significantly faster than the 6100: "unprecedented server performance gains". That is somewhat the case if you recompile your software with the latest and greatest optimized compiler as AMD's own SPEC CINT (+19%), CFP 2006 (+11%) and Linpack benchmarks (+32%) show.

One of the real advantages of a new processor architecture (prime examples where the K7 and K8) is if it performs well in older software too, without requiring a recompile. For some people of the HPC world, recompiling is acceptable and common, but for everybody else (that is probably >95% of the market!), it's best if existing binaries run faster. Administrators generally are not going to upgrade and recompile their software just to make better use of a new server CPU. Hopefully AMD's engineers have been looking into improving the legacy software performance of their latest chip the last few months, because it could use some help.

On the other side of the coin, it is clear that some of the excellent features of the new Opteron are not leveraged by the current software base. The deeper sleep and more advanced core gating is not working to its full potential, and the current operating systems frequently don't appear to know how to get the best from Turbo Core. The clock can be boosted by 39% when half of the cores are active, but an 18% boost was the best we saw (in a single-threaded app!). Simply turning the right knobs gave some tangible power savings (see ESXi) and some impressive performance improvements (see Windows Server 2008).

In short, we're going to need to do some additional testing and take this server out for another test drive, and we will. Stay tuned for a follow-up article as we investigate other options for improving performance.

Other Tests: TrueCrypt and 7-Zip
Comments Locked

106 Comments

View All Comments

  • duploxxx - Thursday, November 17, 2011 - link

    Very interesting review as usual Johan, thx. It is good to see that there are still people who want to thoroughly make reviews.

    While the message is clear on the MS OS of both power and performance i think it isn't on the VMware. First of all it is quite confusing to what settings exactly have been used in BIOS and to me it doesn't reflect the real final conclusion. If it ain't right then don't post it to my opinion and keep it for further review....

    I have a beta version of interlagos now for about a month and the performance testing depending on bios settings have been very challenging.

    When i see your results i have following thoughts.

    performance: I don't think that the current vAPU2 was able to stress the 2x16core enough, what was the avarage cpu usage in ESXTOP during these runs? On top of that looking at the result score and both response times it is clear that the current BIOS settings aren't optimal in the balanced mode. As you already mentioned the system is behaving strange.
    VMware themselves have posted a document for v5 regarding the power best practices which clearly mentions that these needs to be adapted. http://www.vmware.com/files/pdf/hpm-perf-vsphere5....

    To be more precise, balanced has never been the right setting on VMware, the preferred mode has always been high performance and this is how we run for example a +400 vmware server farm. We rather use DPM to reduce power then to reduce clock speed since this will affected total performance and response times much more, mainly on the virtualization platform and OEM bios creations (lets say lack of in depth finetuning and options).

    Would like to see new performance results and power when running in high performance mode and according the new vSphere settings....
  • JohanAnandtech - Thursday, November 17, 2011 - link

    "l it is quite confusing to what settings exactly have been used in BIOS and to me it doesn't reflect the real final conclusion"

    http://www.anandtech.com/show/5058/amds-opteron-in...
    You can see them here with your own eyes.
    + We configured the C-state mode to C6 as this is required to get the highest Turbo Core frequencies

    "performance: I don't think that the current vAPU2 was able to stress the 2x16core enough, what was the avarage cpu usage in ESXTOP during these runs?"

    93-99%.

    "On top of that looking at the result score and both response times it is clear that the current BIOS settings aren't optimal in the balanced mode."

    Balanced and high performance gave more or less the same performance. It seems that the ESX power manager is much better at managing p-states than the Windows one.

    We are currently testing Balanced + c-states. Stay tuned.
  • duploxxx - Thursday, November 17, 2011 - link

    thx for answers, i read the whole thread, just wasn't sure that you took the same settings for both windows and virtual.

    according to Vmware you shouldn't take balanced but rather OS controlled, i know my BIOS has that option, not sure for the supermicro one.

    quite a strange result with the ESXTOP above 90% with same performance results, there just seems to be a further core scaling issue on the vAPU2 with the performance results or its just not using turbo..... we know that the module doesn't have the same performance but the 10-15% turbo is more then enough to level that difference which would still leave you with 8 more cores

    When you put the power mode on high performance it should turbo all cores for the full length at 2.6ghz for the 6276, while you mention it results in same performance are you sure that the turbo was kicking in? ESXTOP CPU higher then 100%? it should provide more performance....
  • Calin - Friday, November 18, 2011 - link

    You're encrypting AES-256, and Anand seem to encryrpt AES-128 in the article you liked to in the Other Tests: TrueCrypt and 7-zip page
  • taltamir - Friday, November 18, 2011 - link

    Conclusion: "Intel gives much better performance/watt and performance in general; BD gives better performance/dollar"

    Problem: Watts cost dollars, lots of them in the server space because you need to some some pretty extreme cooling. Also absolute performance per physical space matters a lot because that ALSO costs tons of money.
  • UberApfel - Sunday, November 20, 2011 - link

    A watt-year is about $2.

    The difference in cost between a X5670 & 6276; $654

    On Page 7...
    X5670: 74.5 perf / 338 W
    6276: 71.2 perf / 363 W

    adjusted watt-per-performance for 6276: 363 * (74.5 / 71.2) = 380

    difference in power consumption: 42W

    If a server manages an average of 50% load over all time; the Xeon's supposed superior power-efficiency would pay for itself after only 31 years.

    Of course you're not taking into consideration that this test is pretty much irrelevant to the server market. Additionally, as the author failed to clarify when asked, Anandtech likely didn't use newer compilers which show up to a 100% performance increase in some applications ~ looky; http://www.phoronix.com/scan.php?page=article&...
  • Thermalzeal - Monday, November 21, 2011 - link

    Good job AMD, you had one thing to do, test your product and make sure it beat competitors at the same price, or gave comparable performance for a lower price.

    Seriously, wtf are you people doing?
  • UberApfel - Tuesday, November 22, 2011 - link

    Idiots like this is exactly why I say the review is biased. How can anyone with the ability to type be able to scan over this review and come to such a conclusion. At least with the confidence to comment.
  • zappb - Tuesday, November 29, 2011 - link

    completely agree - some very strange comments along these lines over the last 11 pages
  • zappb - Tuesday, November 29, 2011 - link

    posted by ars technica - incredibly tainted in intels favour

    The title is enough:

    "AMD's Bulldozer server benchmarks are here, and they're a catastrophe"

Log in

Don't have an account? Sign up now