Zooming in on SPEC CPU2006: the Bad

The optimized SPEC CPU2006 int binaries allow gains in the range of 30% to 117%. Unfortunately the complete benchmark suite only shows a gain of 21% when we compare the Opteron 6276 with the 6176. Closer inspection shows that four benchmarks regress. The regression appears to be small in most benchmarks (7 to 14%), but remember that we have 33% more cores. Even a small regression of 7% means that we are losing up to 30% of the previous architecture's single-threaded performance!

SPEC Int CPU2006: the Bulldozer unfriendly

Perlbench has high locality in the L1 and L2 caches and rarely accesses the Last Level Cache, let alone the memory. The result is a benchmark that delivers high IPC: 1.67 on a five year old Core 2 Duo ("Merom"), and close to +/- 1.9 IPC on the latest Intel CPUs. The interesting thing to note is that h264ref and Perlbench are among the top IPC performers in the SPEC CPU2006 suite.

Sjeng (chess) and Gobmk are both Artificial Intelligence subroutines. Again, the IPC is relatively high (>1), but their most important performance characteristic is that they contain a very high percentage of hard to predict branches: twice the average of the SPEC CPU integer suite.

Granted, the evidence we've presented is still circumstantial. It would take an extremely long and intensive profiling session on all new processors to really determine what is going on, and that is beyond our time budget: one SPEC CPU run alone consumes a whole day. However, we did get our hands dirty. A short profiling session on three different benchmarks gives us some very interesting results that we want to discuss next.

Zooming in on SPEC CPU 2006: the Good IPC Analysis
Comments Locked

84 Comments

View All Comments

  • Homeles - Wednesday, May 30, 2012 - link

    This. Read 3rd party reviews (like AnandTech!) -- several of them -- and draw your conclusions from there. That's pretty much the point of reviews; if marketing teams could provide honest, reliable benchmarks over a wide range of applications, we'd have little need for 3rd party reviews.
  • Mugur - Thursday, May 31, 2012 - link

    Well... they actually did!
  • moravista - Wednesday, May 30, 2012 - link

    Great article Johan! I have been reading your articles since the Pentium III / K6-2 days and have really enjoyed them! Thanks for sharing your insight! Keep 'em coming!
  • JohanAnandtech - Friday, June 1, 2012 - link

    Great to hear from you. Did you used to participate at the different forums on a different callsign?
  • muy - Wednesday, May 30, 2012 - link

    i want a phenom II x4 980+ on 32 nm. this whole idea of "lets put as many crippled dual cores on a die and smack a level 3 cache on top and call it out next cpu" is utter crap stuff that doesn't multi thread well (95 % of all stuff).

    6 core bulldozer i bought to replace my amd x3 450 is slower than the chip i wanted to replace at the same clock speed. now i have a shiny asus rog mb, a x3 450 powering it, and a 6 core bulldozer gathering dust. what a waste of money that was.

    shame i can't find any x4 970+'s anymore and amd is to foolhardy to keep manufacturing their best gaming cpu's, let alone do a shrink on them to 32 nm.

    i can only imagine how much better a phenom 2 x4 9xx, default clocked at 4.2 ghz+ would be than any bulldozer. (and how much cheaper to manufacture considering the die size compared to the die size of bulldozer).

    i just don't understand amd.
  • Roland00Address - Wednesday, May 30, 2012 - link

    Microcenter has these following processors
    1045t six core for $99
    965 quad core black edition for $99
    960t quad core black edition for $89 (this model is a disabled six core and has a possibility of unlocking to a 6 core. The 960t is a clearance processor so it is while supplies last.
  • fic2 - Thursday, May 31, 2012 - link

    Those are all 45 nm. He is wanting a tick - a die shrunk Phenom II.
    Would have to agree with him. If AMD would do a die shrink they would have a killer product - assuming GloFo didn't f*ck it up.
  • muy - Wednesday, May 30, 2012 - link

    bulldozer doesn't do single threaded, highly branching (cough games cough) stuff well.

    and before you say "some games use multiple cores", i'll say that 1 core running on 100 % and 7 cores at 5 % is not a good use of multi threading.

    (1 * 100) + (7 * 5) = (1 * 100) + (1 * 35) - 1.35 cores used. this means that a DUAL core going at 10 % higher speed than the exampled 8 core would be 10 % faster than the 8 core 'using' it's 8 cores.

    clock speed + ipc are the only things that matter 90% + of the time for games.
  • wolfman3k5 - Wednesday, May 30, 2012 - link

    People don't buy CPUs based on theoretical performance, ideology or brand loyalty (OK, some fan-boys do). Most of us are not computer engineers, and even if we where, it wouldn't matter, because at the end of the day only the end result would matter: performance, efficiency and price. Just like I didn't buy Intel because it looked good on paper back in the glory days of AMD (cca. 2005). So no matter how deep and involved these articles are, AMD still trails Intel when it comes to performance, and it will do so until their lazy and incompetent CPU engineers will get off their lazy buts and start working. The sole reason why Bulldozer was such a massive fail was because most of the design process was highly automated. So, stop slacking and start working lazy AMD engineers!
  • Homeles - Wednesday, May 30, 2012 - link

    Being a "lazy" electrical engineer is practically impossible. The amount of work that has to go into making these processors simply function is quite massive. These guys work hard to get to where they are with their careers and work even harder to keep those careers. The margin of error here is also quite huge... a small flaw can create enormous performance penalties.

    I'd be willing to bet that many, if not most of Bulldozer's shortcomings could be blamed on management. Saying it was "lazy engineers" is callous and ignorant.

Log in

Don't have an account? Sign up now