The Current Situation

It's not hard to explain why an 8-thread processor with slightly lower single-threaded performance does not do well in many desktop applications. If you compare for example the hex-core Core i7-3960X with a quad-core i7-3820, four games did not benefit from the extra two cores: Civilization V, Crysis, Dirt 3 and Metro 2033. In Starcraft 2, World of Warcraft, and Dawn of War 2, the 50% higher core count was good for a 10% performance boost at best. In other words, the situation has improved, but most games don't scale well beyond four cores. There are also other factors at play, though, as it's already known that StarCraft II doesn't use more than two cores; instead, it's likely the 15MB (vs. 10MB in i7-3820) L3 cache that helps improve performance.

The situation in the server space is a lot harder to explain. The Opteron 6100 was able to keep up—more or less—with the Xeon 5600 performancewise. However, the Xeon 5600 was equipped with much better power management and the Xeon won the performance/watt race in most applications, with the exception of HPC applications.

The Opteron 6200 added a bit of performance but sips much less power at low and medium load, so it was capable of offering a better performance per Watt ratio than its older brother. However, since the Xeon E5 came out, the situation became pretty dramatic for the Opteron. One telling example is the fact that only one VMmark 2.0 result on the Opteron 6200 exists, but it has been withdrawn. Even if the reported 12.77 score is close to truth, we need four AMD Opteron 6726 (2.3GHz) to beat the best dual Xeon E5 (2690 at 2.9GHz) by 15%.

We have shown already quite a few benchmarks in two Opteron 6276 articles and one Xeon E5 review. We summarized the relevant numbers of both articles in the table below. The benchmarks below are real world and very relevant to the professional in our opinion.

Software: Importance in the market Opteron 6276 vs.
Opteron 6174
Xeon E5-2660
vs. Opteron 6276

Virtualization: 20-50%

   
ESXi + Linux (vApusMark FOS)

+1%

+40%

OLAP Databases: 10-15%

 

 
MS SQL Server 2008 R2 (OLAP throughput)

-9%

+34%

HPC: 5-7%

 

 

LS-Dyna (Neon-Refined)

+21%

+26%

Rendering software: 2-3%

 

 

Cinebench

+2%

+37%

ERP

 

 

SAP

+18%

+13%

Now consider that all these applications are highly-threaded and scale well. Despite the 33% higher integer core count, the Opteron 6276 is not able to outperform the older Magny-Cours in the OLAP, virtualization and rendering benchmarks. However, the architecture is showing its promise by offering about 20% better performance in SAP and HPC applications.

What makes the Bulldozer cores fail in the OLAP benchmark and succeed in SAP? We now have some interesting profiling details on SAP as well as our OLAP benchmark, so we can delve deeper.

Setting Expectations: the Back End SAP S&D Benchmark in Depth
Comments Locked

84 Comments

View All Comments

  • Homeles - Wednesday, May 30, 2012 - link

    This. Read 3rd party reviews (like AnandTech!) -- several of them -- and draw your conclusions from there. That's pretty much the point of reviews; if marketing teams could provide honest, reliable benchmarks over a wide range of applications, we'd have little need for 3rd party reviews.
  • Mugur - Thursday, May 31, 2012 - link

    Well... they actually did!
  • moravista - Wednesday, May 30, 2012 - link

    Great article Johan! I have been reading your articles since the Pentium III / K6-2 days and have really enjoyed them! Thanks for sharing your insight! Keep 'em coming!
  • JohanAnandtech - Friday, June 1, 2012 - link

    Great to hear from you. Did you used to participate at the different forums on a different callsign?
  • muy - Wednesday, May 30, 2012 - link

    i want a phenom II x4 980+ on 32 nm. this whole idea of "lets put as many crippled dual cores on a die and smack a level 3 cache on top and call it out next cpu" is utter crap stuff that doesn't multi thread well (95 % of all stuff).

    6 core bulldozer i bought to replace my amd x3 450 is slower than the chip i wanted to replace at the same clock speed. now i have a shiny asus rog mb, a x3 450 powering it, and a 6 core bulldozer gathering dust. what a waste of money that was.

    shame i can't find any x4 970+'s anymore and amd is to foolhardy to keep manufacturing their best gaming cpu's, let alone do a shrink on them to 32 nm.

    i can only imagine how much better a phenom 2 x4 9xx, default clocked at 4.2 ghz+ would be than any bulldozer. (and how much cheaper to manufacture considering the die size compared to the die size of bulldozer).

    i just don't understand amd.
  • Roland00Address - Wednesday, May 30, 2012 - link

    Microcenter has these following processors
    1045t six core for $99
    965 quad core black edition for $99
    960t quad core black edition for $89 (this model is a disabled six core and has a possibility of unlocking to a 6 core. The 960t is a clearance processor so it is while supplies last.
  • fic2 - Thursday, May 31, 2012 - link

    Those are all 45 nm. He is wanting a tick - a die shrunk Phenom II.
    Would have to agree with him. If AMD would do a die shrink they would have a killer product - assuming GloFo didn't f*ck it up.
  • muy - Wednesday, May 30, 2012 - link

    bulldozer doesn't do single threaded, highly branching (cough games cough) stuff well.

    and before you say "some games use multiple cores", i'll say that 1 core running on 100 % and 7 cores at 5 % is not a good use of multi threading.

    (1 * 100) + (7 * 5) = (1 * 100) + (1 * 35) - 1.35 cores used. this means that a DUAL core going at 10 % higher speed than the exampled 8 core would be 10 % faster than the 8 core 'using' it's 8 cores.

    clock speed + ipc are the only things that matter 90% + of the time for games.
  • wolfman3k5 - Wednesday, May 30, 2012 - link

    People don't buy CPUs based on theoretical performance, ideology or brand loyalty (OK, some fan-boys do). Most of us are not computer engineers, and even if we where, it wouldn't matter, because at the end of the day only the end result would matter: performance, efficiency and price. Just like I didn't buy Intel because it looked good on paper back in the glory days of AMD (cca. 2005). So no matter how deep and involved these articles are, AMD still trails Intel when it comes to performance, and it will do so until their lazy and incompetent CPU engineers will get off their lazy buts and start working. The sole reason why Bulldozer was such a massive fail was because most of the design process was highly automated. So, stop slacking and start working lazy AMD engineers!
  • Homeles - Wednesday, May 30, 2012 - link

    Being a "lazy" electrical engineer is practically impossible. The amount of work that has to go into making these processors simply function is quite massive. These guys work hard to get to where they are with their careers and work even harder to keep those careers. The margin of error here is also quite huge... a small flaw can create enormous performance penalties.

    I'd be willing to bet that many, if not most of Bulldozer's shortcomings could be blamed on management. Saying it was "lazy engineers" is callous and ignorant.

Log in

Don't have an account? Sign up now