A Word on Reliability

Marc Prieur has been around writing about hardware for as long as I can remember (think back to the old school Tom days). Late last year he published some particularly controversial numbers on his website: failure rates of various PC components according to a French etailer. Among the components were SSDs and the numbers are below:

SSD Failure Rates - Hardware.fr
  Intel Corsair Crucial Kingston OCZ
Failure Percentage 0.59% 2.17% 2.25% 2.39% 2.93%

I should add that the numbers Marc published were accurate (confirmed by some of the manufacturers involved), although they don’t paint the complete picture of world wide failure rates - they are an important sample to look at.

Other than Intel, none of the companies listed in that article were particularly pleased with the numbers.

I mentioned earlier that the 510 would go through Intel’s extensive validation testing, just like any other Intel product. Presumably this means that the SSD 510 should have similarly low failure rates in the field (unless there’s something horribly wrong with the Marvell controller that is). Compatibility should also be a strong point of the SSD 510 due to Intel’s stringent internal testing.

Note that I am separating reliability and compatibility from drive longevity. There’s typically a good correlation between high random write performance and low write amplification. The Intel SSD 510 doesn’t have particularly high random write performance, and in turn should suffer from fairly high write amplification in highly random workloads.

I’ve already proved in the past that at 5,000 p/e cycles there’s no cause for worry for a normal desktop user. The likelihood that you’ll wear out all of your NAND within the next 5 years is very, very low. However I will say that when faced with enterprise workloads you’re going to have to pay much closer attention to write amplification and spare area than you would on say a SandForce drive.

The Test

CPU Intel Core i7 965 running at 3.2GHz (Turbo & EIST Disabled)
Intel Core i7 2600K running at 3.4GHz (Turbo & EIST Disabled) - for AT SB 2011, AS SSD & ATTO
Motherboard: Intel DX58SO (Intel X58)
Intel H67 Motherboard
Chipset: Intel X58 + Marvell SATA 6Gbps PCIe Intel H67
Chipset Drivers: Intel + Intel IMSM 8.9
Intel + Intel RST 10.2
Memory: Qimonda DDR3-1333 4 x 1GB (7-7-7-20)
Video Card: eVGA GeForce GTX 285
Video Drivers: NVIDIA ForceWare 190.38 64-bit
Desktop Resolution: 1920 x 1200
OS: Windows 7 x64
Intel’s SSD 510 Powered by Marvell Random Read/Write Speed


View All Comments

  • TSnor - Wednesday, March 02, 2011 - link

    Article says "Write speed with fully incompressible data is easily a victory for the SF-2200 based OCZ Vertex 3. "

    I think you meant "Write speed with compressible data is easily a victory for the SF-2200 based OCZ Vertex 3. "

    Excellent article, I was interested in the 3rd gen intel SSD, but not at these specs. Wish you gave the read latency time (it can be inferred to some degree from the elapsed time charts which are good). Also, given the size of internal cache these devices use perhaps running for more than 3 mins would be a good idea. The average performance is still changing at 3 mins.
  • AstroGuardian - Wednesday, March 02, 2011 - link

    "I mentioned earlier that the 510 would go through Intel’s extensive validation testing, just like any other Intel product."

    Yea right! Just like the H67 and P67. Yea, that made me so happy.
  • Anand Lal Shimpi - Wednesday, March 02, 2011 - link

    That's 100% a valid point and it does show that even with extensive validation errors can still get through.

    You'll remember that the X25-M was the first to have major firmware issues before any of its present day competitors were even created.

    Only time will tell how well Intel has learned from those experiences and how seriously it's taking the validation of the 510. Initial compatibility testing looks good but we've got a long road ahead of us.

    Take care,
  • Ryomitomo - Thursday, March 03, 2011 - link

    At least Intel's labs identified the problems themselves, disclosed the problem themselves, will recall and exchange to fix the problem.

    These things makes me feel very confident to buy future Intel products.
  • Nihility - Thursday, March 03, 2011 - link

    A good point. Unlike certain NVIDIA mobile chipsets. Reply
  • Chloiber - Wednesday, March 02, 2011 - link

    ...I think Anand is right. Many of you are complaining, but as he said on the final page: it is not clear, where the actual limits are for random speeds. Of course, it's always better to have more. The thing is, that your PC at home can't benefit from 60'000 IOPS. It just can't. You can run it through benchmarks which show high numbers, but as soon as you feed the drive and the CPU with real data, the drive is NOT the limiting factor anymore.
    I'm not saying that it's a good thing the Intel 510 has such low random speeds, compared to other, even older drives. But in the end, the question is whether or not you can actually benefit from 200MB/s random reads and random writes with QDs above 4.

    Anand said himself, and I assure you that he is correct - you can trace it yourself if you want - that with standard workload on home desktop PCs, Queue Depth rarely exceeds 1 or 2, especially not with an SSD in your system. Not even during boot!
    And now THINK AGAIN. What are the random 4k read speeds for low QD of EVERY SSD today? It's actually limited by the NAND being used and it's between 20MB/s and 30MB/s for EVERY SSD.
    Again, I'm not saying that high IOPS aren't important. I'm just saying, they aren't as important as you think. Not anymore, not in the very high regions we are today and especially not with very high QDs.

    The 510 seems to have very good performance in real world benchmarks - it seems that most of you rate synthetic benchmarks higher than real world benchmarks. This, I don't quite understand.
  • semo - Wednesday, March 02, 2011 - link

    The fact is, you will not be using a very competitively priced 250GB SSD for net browsing. When I get my SSD, I'll be using it to store my test VMs where I do a lot of software installations and snapshot jumping.

    The 510 is not a mainstream product where the QD rarely goes above 2. Not at that price at least. I've installed an SSD for a few average users but they were all 60GB drives. I could never justify the price of a 250GB SSD to them but a pro user might (i.e. someone who might make use of a high IOPS drive).
  • semo - Wednesday, March 02, 2011 - link

    Meant to say "uncompetitively". Too expensive for the average computer user. Reply
  • tno - Thursday, March 03, 2011 - link

    Spot on, and so a mainstream drive this is not. As workstation drive, however, this seems pretty solid. Reply
  • Nentor - Wednesday, March 02, 2011 - link

    If it (the 510) was very cheap everything you say makes sense, but since it is not they'd better make it as fast as possible. Reply

Log in

Don't have an account? Sign up now