Sandy Bridge: Bridging the Mobile Gap

We’ve been anxiously awaiting Sandy Bridge for a while, as the old Clarksfield processor was good for mobile performance but awful when it came to battery life. Take a power hungry CPU and pair it up with a discrete GPU that would usually require at least 5W and you get what we’ve lamented in the past year or so: battery life that usually maxed out at 2.5 hours doing nothing, and plummeted to as little as 40 minutes under a moderate load.

Sandy Bridge fixes that problem, and it fixes it in a major way. Not only do we get 50 to 100% better performance than the previous generation high-end Intel mobile chips, but we also get more than double the integrated graphics performance and battery life in most situations should be similar to Arrandale, if not better. And that’s looking at the quad-core offerings!

When dual-core and LV/ULV Sandy Bridge processors start arriving next month, we’ll get all of the benefits of the Sandy Bridge architecture with the potential for even lower power requirements. It’s not too hard to imagine the ULV Sandy Bridge chips reaching Atom levels of battery life under moderate loads, and performance will probably be almost an order of magnitude better than Atom. Sure, you’ll pay $700+ for SNB laptops versus $300 netbooks, but at least you’ll be able to do everything you could want of a modern PC. In summary, then, Sandy Bridge improves laptop and notebook performance to the point where a large number of users could easily forget about desktops altogether; besides, you can always plug your notebook into a keyboard, mouse, and display if needed. About the only thing desktop still do substantially better is gaming, and that’s largely due to the use of 300W GPUs.

All this raises a big question: what can AMD do to compete? The best we’ve seen from AMD has been in the ultraportable/netbook space, where their current Nile platform offers substantially better than Atom performance in a relatively small form factor, with a price that’s only slightly higher. The problem is that Intel already has parts that can easily compete in the same segment—ULV Arrandale and even standard Arrandale offer somewhat better graphics performance than HD 4225 (barring driver compatibility issues) with better battery life and substantially higher CPU performance—and it’s not like most people play demanding games on such laptops anyway. It’s a triple threat that leaves AMD only one choice: lower prices. If Intel were to drop pricing on their ULV parts, they could remove any reason to consider AMD mobile CPUs right now, but so far Intel hasn’t shown an interest in doing so.

In the near future, we’ll see AMD’s Brazos platform come out, and that should help on the low end. We expect better than Atom performance with substantially better graphics, but prices look to be about 50% higher than basic Atom netbooks/nettops and you’ll still have substantially faster laptops available for just a bit more. I’m not sure DX11 capable graphics even matter until you get CPUs at least two or three times more powerful than Atom (and probably at least twice as fast as the netbook Brazos chips), but we’ll see where Intel chooses to compete soon enough. Most likely, they’ll continue to let AMD have a piece of the sub-$500 laptop market, as that’s not where they make money.

The lucrative laptops are going to be in the $750+ range, and Intel already has a stranglehold on that market. Arrandale provides faster performance than anything AMD is currently shipping, while also beating AMD in battery life. Pair Arrandale with an NVIDIA Optimus GPU and you also cover the graphics side of things, all while still keeping prices under $1000. Now it looks like Intel is ready to bump performance up another 25% at least (estimating dual-core SNB performance), and power saving features likewise improve. AMD should have some new offerings in the next six months, e.g. Llano, but Llano is supposed to be a combination of Fusion graphics with a current generation CPU, with the Fusion plus Bulldozer coming later.

We have no doubt that AMD can do graphics better than the current Intel IGP, but at some point you reach the stage where you need a faster CPU to keep the graphics fed. Sandy Bridge has now pushed CPU performance up to the point where we can use much faster GPUs, but most of those fast GPUs also tend to suck down power like a black hole. Optimus means we can get NVIDIA’s 400M (and future parts) and still maintain good battery life, but gaming and battery life at the same time remains a pipe dream. Maybe AMD’s Fusion will be a bit more balanced towards overall computing.

I guess what I’m really curious to see is if AMD, Intel, NVIDIA, or anyone else can ever give us 10 hours of mobile gaming. Then we can start walking around jacked into the Matrix [Ed: that would be the William Gibson Matrix/Cyberspace, not the Keanu Reaves movies, though I suppose both ideas work] and forget about the real world! With Intel now using 32nm process technology on their IGP and 22nm coming in late 2011, we could actually begin seeing a doubling of IGP performance every ~18 months without increasing power requirements, and at some point we stop needing much more than that. Put it another way: Intel’s HD Graphics 3000 with 114M transistors is now providing about the same level of performance as the PS3 and Xbox 360 consoles, and you pretty much get that “free” with any non-Atom CPU going forward. Maybe the next consoles won’t even need to use anything beyond AMD/Intel’s current integrated solutions?

However you want to look at things, 2011 is shaping up to be a big year for mobility. We bumped our laptop reviews up from about 25 articles in 2009 to a whopping 100 articles in 2010, not to mention adding smartphones into the mix. It’s little surprise that laptop sells have eclipsed desktops, and that trend will only continue. While the Sandy Bridge notebook is still a notebook, you start thinking ten years down the road and the possibilities are amazing. iPhone and Android devices are now doing Xbox visuals in your hand, and Xbox 360 isn’t far off. Ten years from now, we’ll probably see Sandy Bridge performance (or better) in a smartphone that sucks milliwatts.

SNB marks the first salvo in the mobile wars of 2011, but there’s plenty more to come. Intel’s cards are now on the table; how will AMD and NVIDIA respond? Maybe there’s a wild card or two hiding in someone’s sleeve that we didn’t expect. Regardless, we’ll be waiting to see where the actual notebooks go with the new hardware, and CES should provide a slew of new product announcements over the coming week. Stay tuned!

What About Heat, Noise, and the LCD?
Comments Locked

66 Comments

View All Comments

  • JarredWalton - Tuesday, January 4, 2011 - link

    Definitely a driver bug, and I've passed it along to Intel. The HD 4250 manages 7.7FPS, so SNB ought to be able to get at least 15FPS or so. The game is still a beast, though... some would say poorly written, probably, but I just call it "demanding". LOL
  • semo - Monday, January 3, 2011 - link

    Thanks for mentioning USB 3.0 Jarred. It is a much too overlooked essential feature these days. I simply will not pay money for a new laptop in 2011 without a single USB 3.0 port.
  • dmbfeg2 - Monday, January 3, 2011 - link

    Which tool do you use to check the turbo frequencies under load?
  • JarredWalton - Monday, January 3, 2011 - link

    I had both CPU-Z and the Intel Turbo Monitoring tool up, but neither one supports logging so I have to just eyeball it. The clocks in CPU-Z were generally steady, though it's possible that they would bump up for a few milliseconds and then back down and it simply didn't show up.
  • Shadowmaster625 - Monday, January 3, 2011 - link

    On the other Sandy Bridge article by Anand, right on the front page, it is mentioned that the 6EU GT1 (HD2000) die has 504M transistors, while the 12EU GT2 (HD 3000) die has 624M transistors. Yet here you are saying HD Graphics 3000 has 114M. If the 12EU version has 120M more transistors than the 6EU version, then does that not imply a total gpu transistor count well north of 200M?
  • JarredWalton - Monday, January 3, 2011 - link

    AFAIK, the 114M figure is for the 12EU core. All of the currently shipping SNB chips are quad-core with the full 12EU on the die, but on certain desktop models Intel disables half the EUs. However, if memory serves there are actually three SNB die coming out. At the top is the full quad-core chip. Whether you have 6EU or 12EU, the die is the same. For the dual-core parts, however, there are two chips. One is a dual-core with 4MB L3 cache and 12EUs, which will also ship in chips where the L3 only shows 3MB. This is the GT1 variant. The other dual-core version is for the ultra-low-cost Pentium brand, which will ship with 6EUs (there will only be 6EU on the die) and no L3 cache, as well as some other missing features (Quick Sync for sure). That's the GT2, and so the missing 120M includes a lot of items.

    Note: I might not be 100% correct on this, so I'm going to email Anand and our Intel contact for verification.
  • mino - Monday, January 3, 2011 - link

    Nice summary (why was this not in the article ?).

    Anyway those 114M do not include memory controller, encoding, display output etc. so the comparison with Redwood/Cedar is not really meaningful.

    If you actually insist on comparing transistor counts, semething like (Cedar-Redwood)/3 shall give you a reasonable value of AMD's SPU efficiency from transistors/performance POW.
  • mino - Monday, January 3, 2011 - link

    "After all, being able to run a game at all is the first consideration; making it look good is merely the icing on the cake."

    If making it look good is merely icing on the cake, why bother with GPUs ? Lets just play 2D Mines!
    (While for the poor souls stuck with Intel IGPs it certainly is just the icing, for Christ's sake, that is a major _problem_, not a feature !!!)

    After a few pages I have decided to forgo the "best-thing-since-sliced-bread" attitude, but, what is too much is too much...
  • mino - Monday, January 3, 2011 - link

    Regardless the attitude, HUGE thanks for listening to comments and including the older games roundup.

    While I'd love to see more games that actually provide playable frame-rates (read: even older ones) on SNB-class IGPs like Far Cry or HL2, even this mini-roundup is a really big plus.

    As for a suggestion on future game-playability roundup on IGP's, it is really simple:
    1) Take a look at your 2006-2007 GPU benchmarking suites
    2) Add in a few current MMORPGs
  • JarredWalton - Monday, January 3, 2011 - link

    Anand covered several other titles, and most of the pre-2007 stuff should run fine (outside of blacklisting problems or bugs). Time constraints limit how much we can test, obviously, but your "reviewer on crack" comment is appreciated. 2D and 3D are completely different, and while you might feel graphical quality is of paramount importance, the fact of the matter is that SNB graphics are basically at the same level as PS3/Xbox 360 -- something millions of users are "okay" with.

    NVIDIA and AMD like to show performance at settings where they're barely playable and SNB fails, but that's no better. If "High + 1680x1050" runs at 20FPS with Sandy Bridge vs. 40FPS on discrete mobile GPUs, wouldn't you consider turning down the detail to get performance up? I know I would, and it's the same reason I almost never enable anti-aliasing on laptops: they can't handle it. But if that's what you require, by all means go out and buy more expensive laptops; we certainly don't recommend SNB graphics as the solution for everyone.

    Honestly, until AMD gets the Radeon equivalent of Optimus for their GPUs (meaning, AMD GPU + Intel CPU with IGP and automatic switching, plus the ability to update your Radeon and Intel drivers independently), Sandy Bridge + GeForce 400M/500M Optimus is going to be the way to go.

Log in

Don't have an account? Sign up now