The Lineup

I don’t include a lot of super markety slides in these launch reviews, but this one is worthy of a mention:

Sandy Bridge is launching with no less than 29 different SKUs today. That’s 15 for mobile and 14 for desktop. Jarred posted his full review of the mobile Core i7-2820QM, so check that out if you want the mobile perspective on all of this.

By comparison, this time last year Intel announced 11 mobile Arrandale CPUs and 7 desktop parts. A year prior we got Lynnfield with 3 SKUs and Clarksfield with 3 as well. That Sandy Bridge is Intel’s biggest launch ever goes without saying. It’s also the most confusing. While Core i7 exclusively refers to processors with 4 or more cores (on the desktop at least), Core i5 can mean either 2 or 4 cores. Core i3 is reserved exclusively for dual-core parts.

Intel promised that the marketing would all make sense one day. Here we are, two and a half years later, and the Core i-branding is no clearer. At the risk of upsetting all of Intel Global Marketing, perhaps we should return to just labeling these things with their clock speeds and core counts? After all, it’s what Apple does—and that’s a company that still refuses to put more than one button on its mice. Maybe it’s worth a try.

Check Jarred’s article out for the mobile lineup, but on desktop here’s how it breaks down:

Processor Core Clock Cores / Threads L3 Cache Max Turbo Max Overclock Multiplier TDP Price
Intel Core i7-2600K 3.4GHz 4 / 8 8MB 3.8GHz 57x 95W $317
Intel Core i7-2600 3.4GHz 4 / 8 8MB 3.8GHz 42x 95W $294
Intel Core i5-2500K 3.3GHz 4 / 4 6MB 3.7GHz 57x 95W $216
Intel Core i5-2500 3.3GHz 4 / 4 6MB 3.7GHz 41x 95W $205
Intel Core i5-2400 3.1GHz 4 / 4 6MB 3.4GHz 38x 95W $184
Intel Core i5-2300 2.8GHz 4 / 4 6MB 3.1GHz 34x 95W $177
Intel Core i3-2120 3.3GHz 2 / 4 3MB N/A N/A 65W $138
Intel Core i3-2100 2.93GHz 2 / 4 3MB N/A N/A 65W $117

Intel is referring to these chips as the 2nd generation Core processor family, despite three generations of processors carrying the Core architecture name before it (Conroe, Nehalem, and Westmere). The second generation is encapsulated in the model numbers for these chips. While all previous generation Core processors have three digit model numbers, Sandy Bridge CPUs have four digit models. The first digit in all cases is a 2, indicating that these are “2nd generation” chips and the remaining three are business as usual. I’d expect that Ivy Bridge will swap out the 2 for a 3 next year.

What you will see more of this time around are letter suffixes following the four digit model number. K means what it did last time: a fully multiplier unlocked part (similar to AMD’s Black Edition). The K-series SKUs are even more important this time around as some Sandy Bridge CPUs will ship fully locked, as in they cannot be overclocked at all (more on this later).

Processor Core Clock Cores / Threads L3 Cache Max Turbo TDP
Intel Core i7-2600S 2.8GHz 4 / 8 8MB 3.8GHz 65W
Intel Core i5-2500S 2.7GHz 4 / 4 6MB 3.7GHz 65W
Intel Core i5-2500T 2.3GHz 4 / 4 6MB 3.3GHz 45W
Intel Core i5-2400S 2.5GHz 4 / 4 6MB 3.3GHz 65W
Intel Core i5-2390T 2.7GHz 2 / 4 3MB 3.5GHz 35W
Intel Core i5-2100T 2.5GHz 2 / 4 3MB N/A 35W

There are also T and S series parts for desktop. These are mostly aimed at OEMs building small form factor or power optimized boxes. The S stands for “performance optimized lifestyle” and the T for “power optimized lifestyle”. In actual terms the Ses are lower clocked 65W parts while the Ts are lower clocked 35W or 45W parts. Intel hasn’t disclosed pricing on either of these lines but expect them to carry noticeable premiums over the standard chips. There’s nothing new about this approach; both AMD and Intel have done it for a little while now, it’s just more prevalent in Sandy Bridge than before.

More Differentiation

In the old days Intel would segment chips based on clock speed and cache size. Then Intel added core count and Hyper Threading to the list. Then hardware accelerated virtualization. With Sandy Bridge the matrix grows even bigger thanks to the on-die GPU.

Processor Intel HD Graphics Graphics Max Turbo Quick Sync VT-x VT-d TXT AES-NI
Intel Core i7-2600K 3000 1350MHz Y Y N N Y
Intel Core i7-2600 2000 1350MHz Y Y Y Y Y
Intel Core i5-2500K 3000 1100MHz Y Y N N Y
Intel Core i5-2500 2000 1100MHz Y Y Y Y Y
Intel Core i5-2400 2000 1100MHz Y Y Y Y Y
Intel Core i5-2300 2000 1100MHz Y Y N N Y
Intel Core i3-2120 2000 1100MHz Y N N N N
Intel Core i3-2100 2000 1100MHz Y N N N Y

While almost all SNB parts support VT-x (the poor i3s are left out), only three support VT-d. Intel also uses AES-NI as a reason to force users away from the i3 and towards the i5. I’ll get into the difference in GPUs in a moment.

Introduction Overclocking: Effortless 4.4GHz+ on Air
Comments Locked

283 Comments

View All Comments

  • DanNeely - Monday, January 3, 2011 - link

    The increased power efficiency might allow Apple to squeeze a GPU onto their smaller laptop boards without loosing runtime due to the smaller battery.
  • yuhong - Monday, January 3, 2011 - link

    "Unlike P55, you can set your SATA controller to compatible/legacy IDE mode. This is something you could do on X58 but not on P55. It’s useful for running HDDERASE to secure erase your SSD for example"
    Or running old OSes.
  • DominionSeraph - Monday, January 3, 2011 - link

    "taking the original Casino Royale Blu-ray, stripping it of its DRM"

    Whoa, that's illegal.
  • RussianSensation - Monday, January 3, 2011 - link

    It would have been nice to include 1st generation Core i7 processors such as 860/870/920-975 in Starcraft 2 bench as it seems to be very CPU intensive.

    Also, perhaps a section with overclocking which shows us how far 2500k/2600k can go on air cooling with safe voltage limits (say 1.35V) would have been much appreciated.
  • Hrel - Monday, January 3, 2011 - link

    Sounds like this is SO high end it should be the server market. I mean, why make yet ANOTHER socket for servers that use basically the same CPU's? Everything's converging and I'd just really like to see server mobo's converge into "High End Desktop" mobo's. I mean seriously, my E8400 OC'd with a GTX460 is more power than I need. A quad would help with the video editing I do in HD but it works fine now, and with GPU accelerated rendering the rendering times are totally reasonable. I just can't imagine anyone NEEDING a home computer more powerful than the LGS-1155 socket can provide. Hell, 80-90% of people are probably fine with the power Sandy Bridge gives in laptops now.
  • mtoma - Monday, January 3, 2011 - link

    Perhaps it is like you say, however it's always good for buyers to decide if they want server-like features in a PC. I don't like manufacturers to dictate to me only one way to do it (like Intel does now with the odd combination of HD3000 graphics - Intel H67 chipset). Let us not forget that for a long time, all we had were 4 slots for RAM and 4-6 SATA connections (like you probably have). Intel X58 changed all that: suddenly we had the option of having 6 slots for RAM, 6-8 SATA connections and enough PCI-Express lanes.
    I only hope that LGA 2011 brings back those features, because like you said: it's not only the performance we need, but also the features.
    And, remeber that the software doesn't stay still, it usualy requires multiple processor cores (video transcoding, antivirus scanning, HDD defragmenting, modern OS, and so on...).
    All this aside, the main issue remains: Intel pus be persuaded to stop luting user's money and implement only one socket at a time. I usually support Intel, but in this regard, AMD deserves congratulations!
  • DanNeely - Monday, January 3, 2011 - link

    LGA 2011 is a high end desktop/server convergence socket. Intel started doing this in 2008, with all but the highest end server parts sharing LGA1366 with top end desktop systems. The exception was quad/octo socket CPUs, and those using enormous amounts of ram using LGA 1567.

    The main reason why LGA 1155 isn't suitable for really high end machines is that it doesn't have the memory bandwidth to feed hex and octo core CPUs. It's also limited to 16 PCIe 2.0 lanes on the CPU vs 36 PCIe 3.0 lanes on LGA2011. For most consumer systems that won't matter, but 3/4 GPU card systems will start loosing a bit of performance when running in a 4x slot (only a few percent, but people who spend $1000-2000 on GPUs want every last frame they can get), high end servers with multiple 10GB ethernet cards and PCIe SSD devices also begin running into bottlenecks.

    Not spending an extra dollar or five per system for the QPI connections only used in multi-socket systems in 1155 also adds up to major savings across the hundreds of millions of systems Intel is planning to sell.
  • Hrel - Monday, January 3, 2011 - link

    I'm confused by the upset over playing video at 23.967hz. "It makes movies look like, well, movies instead of tv shows"? What? Wouldn't recording at a lower frame rate just mean there's missed detail especially in fast action scenes? Isn't that why HD runs at 60fps instead of 30fps? Isn't more FPS good as long as it's played back at the appropriate speed? IE whatever it's filmed at? I don't understand the complaint.

    On a related note hollywood and the world need to just agree that everything gets recorded and played back at 60fps at 1920x1080. No variation AT ALL! That way everything would just work. Or better yet 120FPS and with the ability to turn 3D on and off as u see fit. Whatever FPS is best. I've always been told higher is better.
  • chokran - Monday, January 3, 2011 - link

    You are right about having more detail when filming with higher FPS, but this isn't about it being good or bad, it's more a matter of tradition and visual style.
    The look movies have these days, the one we got accustomed to, is mainly achieved by filming it in 24p or 23.967 to be precise. The look you get when filming with higher FPS just doesn't look like cinema anymore but tv. At least to me. A good article on this:
    http://www.videopia.org/index.php/read/shorts-main...
    The problem with movies looking like TV can be tested at home if you got a TV that has some kind of Motion Interpolation, eg. MotionFlow called by Sony or Intelligent Frame Creation by Panasonic. When turned on, you can see the soap opera effect by adding frames. There are people that don't see it and some that do and like it, but I have to turn it of since it doesn't look "natural" to me.
  • CyberAngel - Thursday, January 6, 2011 - link

    http://en.wikipedia.org/wiki/Showscan

Log in

Don't have an account? Sign up now