Z68

In developing its 6-series chipsets Intel wanted to minimize as much risk as possible, so much of the underlying chipset architecture is borrowed from Lynnfield’s 5-series platform. The conservative chipset development for Sandy Bridge left a hole in the lineup. The P67 chipset lets you overclock CPU and memory but it lacks the flexible display interface necessary to support SNB’s HD Graphics. The H67 chipset has an FDI so you can use the on-die GPU, however it doesn’t support CPU or memory overclocking. What about those users who don’t need a discrete GPU but still want to overclock their CPUs? With the chipsets that Intel is launching today, you’re effectively forced to buy a discrete GPU if you want to overclock your CPU. This is great for AMD/NVIDIA, but not so great for consumers who don’t need a discrete GPU and not the most sensible decision on Intel’s part.

There is a third member of the 6-series family that will begin shipping in Q2: Z68. Take P67, add processor graphics support and you’ve got Z68. It’s as simple as that. Z68 is also slated to support something called SSD Caching, which Intel hasn’t said anything to us about yet. With version 10.5 of Intel’s Rapid Storage Technology drivers, Z68 will support SSD caching. This sounds like the holy grail of SSD/HDD setups, where you have a single drive letter and the driver manages what goes on your SSD vs. HDD. Whether SSD Caching is indeed a DIY hybrid hard drive technology remains to be seen. It’s also unclear whether or not P67/H67 will get SSD Caching once 10.5 ships.

LGA-2011 Coming in Q4

One side effect of Intel’s tick-tock cadence is a staggered release update schedule for various market segments. For example, Nehalem’s release in Q4 2008 took care of the high-end desktop market, however it didn’t see an update until the beginning of 2010 with Gulftown. Similarly, while Lynnfield debuted in Q3 2009 it was left out of the 32nm refresh in early 2010. Sandy Bridge is essentially that 32nm update to Lynnfield.

So where does that leave Nehalem and Gulftown owners? For the most part, the X58 platform is a dead end. While there are some niche benefits (more PCIe lanes, more memory bandwidth, 6-core support), the majority of users would be better served by Sandy Bridge on LGA-1155.

For the users who need those benefits however, there is a version of Sandy Bridge for you. It’s codenamed Sandy Bridge-E and it’ll debut in Q4 2011. The chips will be available in both 4 and 6 core versions with a large L3 cache (Intel isn’t being specific at this point).

SNB-E will get the ring bus, on-die PCIe and all of the other features of the LGA-1155 Sandy Bridge processors, but it won’t have an integrated GPU. While current SNB parts top out at 95W TDP, SNB-E will run all the way up to 130W—similar to existing LGA-1366 parts.

The new high-end platform will require a new socket and motherboard (LGA-2011). Expect CPU prices to start off at around the $294 level of the new i7-2600 and run all the way up to $999.

UEFI Support: 3TB Drives & Mouse Support Pre-Boot A Near-Perfect HTPC
Comments Locked

283 Comments

View All Comments

  • karlostomy - Thursday, January 6, 2011 - link

    what the hell is the point of posting gaming scores at resolutions that no one will be playing at?

    If i am not mistaken, the grahics cards in the test are:
    eVGA GeForce GTX 280 (Vista 64)
    ATI Radeon HD 5870 (Windows 7)
    MSI GeForce GTX 580 (Windows 7)

    So then, with a sandybridge processor, these resolutions are irrelevant.
    1080p or above should be standard resolution for modern setup reviews.

    Why, Anand, have you posted irrelevant resolutions for the hardware tested?
  • dananski - Thursday, January 6, 2011 - link

    Games are usually limited in fps by the level of graphics, so processor speed doesn't make much of a difference unless you turn the graphics detail right down and use an overkill graphics card. As the point of this page was to review the CPU power, it's more representative to use low resolutions so that the CPU is the limiting factor.

    If you did this set of charts for gaming at 2560x1600 with full AA & max quality, all the processors would be stuck at about the same rate because the graphics card is the limiting factor.

    I expect Civ 5 would be an exception to this because it has really counter-intuitive performance.
  • omelet - Tuesday, January 11, 2011 - link

    For almost any game, the resolution will not affect the stress on the CPU. It is no harder for a CPU to play the game at 2560x1600 than it is to play at 1024x768, so to ensure that the benchmark is CPU-limited, low resolutions are chosen.

    For instance, the i5 2500k gets ~65fps in the Starcraft test, which is run at 1024x768. The i5 2500k would also be capable of ~65fps at 2560x1600, but your graphics card might not be at that resolution.

    Since this is a review for a CPU, not for graphics cards, the lower resolution is used, so we know what the limitation is for just the CPU. If you want to know what resolution you can play at, look at graphics card reviews.
  • Tom - Sunday, January 30, 2011 - link

    Which is why the tests have limited real world value. Skewing the tests to maximize the cpu differences makes new cpus look impressive, but it doesn't show the reality that the new cpu isn't needed in the real world for most games.
  • Oyster - Monday, January 3, 2011 - link

    Maybe I missed this in the review, Anand, but can you please confirm that SB and SB-E will require quad-channel memory? Additionally, will it be possible to run dual-channel memory on these new motherboards? I guess I want to save money because I already have 8GB of dual-channel RAM :).

    Thanks for the great review!
  • CharonPDX - Monday, January 3, 2011 - link

    You can confirm it from the photos of it only using two DIMMs in photo.
  • JumpingJack - Monday, January 3, 2011 - link

    This has been discussed in great detail. The i7, i3, and i5 2XXX series is dual channel. The rumor mill is abound with SB-E having quad channel, but I don't recall seen anything official from Intel on this point.
  • 8steve8 - Monday, January 3, 2011 - link

    the K processors have the much better IGP and a variable multiplier, but to use the improved IGP you need an H67 chipset, which doesn't support changing the multiplier?
  • ViRGE - Monday, January 3, 2011 - link

    CPU Multiplier: Yes, H67 cannot change the CPU multiplier

    GPU Multiplier: No, even H67 can change the GPU multiplier
  • mczak - Monday, January 3, 2011 - link

    I wonder why though? Is this just officially? I can't really see a good technical reason why CPU OC would work with P67 but not H67 - it is just turbo going up some more steps after all. Maybe board manufacturers can find a way around that?
    Or is this not really linked to the chipset but rather if the IGP is enabled (which after all also is linked to turbo)?

Log in

Don't have an account? Sign up now